Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: a systematic review

放射基因组学 无线电技术 乳腺摄影术 模式 计算机科学 乳腺癌 医学物理学 人工智能 乳房成像 数字乳腺摄影术 数据科学 医学 机器学习 癌症 社会科学 社会学 内科学
作者
Sadam Hussain,Yareth Lafarga-Osuna,Mansoor Ali,Usman Naseem,Masroor Ahmed,José G. Tamez‐Peña
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:24 (1) 被引量:10
标识
DOI:10.1186/s12859-023-05515-6
摘要

Abstract Background Recent advancements in computing power and state-of-the-art algorithms have helped in more accessible and accurate diagnosis of numerous diseases. In addition, the development of de novo areas in imaging science, such as radiomics and radiogenomics, have been adding more to personalize healthcare to stratify patients better. These techniques associate imaging phenotypes with the related disease genes. Various imaging modalities have been used for years to diagnose breast cancer. Nonetheless, digital breast tomosynthesis (DBT), a state-of-the-art technique, has produced promising results comparatively. DBT, a 3D mammography, is replacing conventional 2D mammography rapidly. This technological advancement is key to AI algorithms for accurately interpreting medical images. Objective and methods This paper presents a comprehensive review of deep learning (DL), radiomics and radiogenomics in breast image analysis. This review focuses on DBT, its extracted synthetic mammography (SM), and full-field digital mammography (FFDM). Furthermore, this survey provides systematic knowledge about DL, radiomics, and radiogenomics for beginners and advanced-level researchers. Results A total of 500 articles were identified, with 30 studies included as the set criteria. Parallel benchmarking of radiomics, radiogenomics, and DL models applied to the DBT images could allow clinicians and researchers alike to have greater awareness as they consider clinical deployment or development of new models. This review provides a comprehensive guide to understanding the current state of early breast cancer detection using DBT images. Conclusion Using this survey, investigators with various backgrounds can easily seek interdisciplinary science and new DL, radiomics, and radiogenomics directions towards DBT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瞬间发布了新的文献求助10
刚刚
阿蕉完成签到 ,获得积分10
刚刚
1秒前
1秒前
研友_5Y9775发布了新的文献求助10
2秒前
gj2221423完成签到 ,获得积分10
2秒前
wait完成签到,获得积分10
2秒前
温柔的曼梅完成签到 ,获得积分10
2秒前
ya发布了新的文献求助10
2秒前
充电宝应助务实的青亦采纳,获得30
2秒前
打打应助不不采纳,获得10
2秒前
my发布了新的文献求助10
3秒前
majiko发布了新的文献求助10
3秒前
FashionBoy应助12采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助义气山水采纳,获得10
5秒前
6秒前
田様应助Wu采纳,获得10
6秒前
顾矜应助欧欧采纳,获得10
6秒前
尹冰露发布了新的文献求助10
6秒前
7秒前
核桃发布了新的文献求助10
7秒前
孙燕应助yiqian采纳,获得10
7秒前
NexusExplorer应助研友_5Y9775采纳,获得10
7秒前
今后应助majiko采纳,获得10
7秒前
8秒前
小马甲应助山水之乐采纳,获得10
9秒前
紫金之巅完成签到 ,获得积分10
9秒前
尼斯卡发布了新的文献求助10
9秒前
顺利的白山完成签到 ,获得积分10
9秒前
10秒前
A羽发布了新的文献求助10
11秒前
12秒前
陈嘉嘉完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
sunnyqqz发布了新的文献求助10
13秒前
Polaris完成签到,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114613
求助须知:如何正确求助?哪些是违规求助? 3653162
关于积分的说明 11568012
捐赠科研通 3357063
什么是DOI,文献DOI怎么找? 1843985
邀请新用户注册赠送积分活动 909833
科研通“疑难数据库(出版商)”最低求助积分说明 826523