Quantification of Long-Range Dependence in Hydroclimatic Time Series: A Method-Comparison Study

航程(航空) 系列(地层学) 蒙特卡罗方法 统计 小波 差异(会计) 数学 计量经济学 估计 环境科学 计算机科学 地质学 会计 古生物学 材料科学 管理 人工智能 经济 业务 复合材料
作者
Jingyi Niu,Ping Xie,Yan‐Fang Sang,Liping Zhang,Linqian Wu,Yanxin Zhu,Bellie Sivakumar,Jingqun Huo,Deliang Chen
出处
期刊:Journal of Applied Meteorology and Climatology [American Meteorological Society]
卷期号:62 (12): 1921-1942
标识
DOI:10.1175/jamc-d-23-0129.1
摘要

Abstract Accurate evaluation of the long-range dependence in hydroclimatic time series is important for understanding its inherent characteristics. However, the reliability of its evaluation may be questioned, since different methods may yield various outcomes. In this study, we evaluate the performances of seven widely used methods for estimating long-range dependence: absolute moment estimation, difference variance estimation, residuals variance estimation, rescaled range estimation, periodogram estimation, wavelet estimation (WLE), and discrete second derivative estimation (DSDE). We examine the influences of six major factors: data length, mean value, three nonstationary components (trend, jump, and periodicity), and one stationary component (short-range dependence). Results from the Monte Carlo experiments show that WLE and DSDE have greater credibility than the other five methods. They also reveal that data length, as well as stationary and nonstationary components, have notable influences on the evaluation of long-range dependence. Following it, we use the WLE and DSDE methods to evaluate the long-range dependence of precipitation during 1961–2015 on the Tibetan Plateau. The results indicate that the precipitation variability mirrors the long-range dependence of the Indian summer monsoon but with obvious spatial difference. This result is consistent with the observations made by previous studies, further confirming the superiority of the WLE and DSDE methods. The outcomes from this study have important implications for modeling and prediction of hydroclimatic time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sophie完成签到 ,获得积分10
1秒前
amanda发布了新的文献求助10
2秒前
Herisland完成签到 ,获得积分10
3秒前
晴心完成签到,获得积分10
3秒前
4秒前
李健的小迷弟应助Mine采纳,获得10
6秒前
6秒前
00发布了新的文献求助10
6秒前
8秒前
8秒前
Lucas应助熊宜浓采纳,获得10
8秒前
飞天企鹅完成签到,获得积分10
9秒前
mlzmlz完成签到,获得积分10
9秒前
坦率翠霜完成签到 ,获得积分10
9秒前
大模型应助LJ采纳,获得10
9秒前
9秒前
CipherSage应助疯狂的平彤采纳,获得10
10秒前
赘婿应助谦让夜香采纳,获得10
11秒前
吕邓宏完成签到 ,获得积分10
11秒前
虚心孤容发布了新的文献求助10
12秒前
mlzmlz发布了新的文献求助20
12秒前
David应助合适的龙猫采纳,获得10
13秒前
淡然平蓝完成签到 ,获得积分10
14秒前
maox1aoxin应助科研通管家采纳,获得30
14秒前
无花果应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
15秒前
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
00完成签到,获得积分10
18秒前
serpant完成签到,获得积分10
18秒前
徐doc完成签到 ,获得积分10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380812
关于积分的说明 10516014
捐赠科研通 3100441
什么是DOI,文献DOI怎么找? 1707496
邀请新用户注册赠送积分活动 821784
科研通“疑难数据库(出版商)”最低求助积分说明 772947