Intelligent airborne monitoring of irregularly shaped man-made marine objects using statistical Machine Learning techniques

背景(考古学) 计算机科学 人工智能 机电一体化 机器学习 数据科学 地理 考古
作者
Kaya Kuru,Stuart B. Clough,Darren Ansell,John F. McCarthy,Stephanie McGovern
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:78: 102285-102285 被引量:7
标识
DOI:10.1016/j.ecoinf.2023.102285
摘要

The marine economy has historically been highly diversified and prolific due to the fact that the Earth's oceans comprise two-thirds of its total surface area. As technology advances, leading enterprises and ecological organisations are building and mobilising new devices supported by cutting-edge marine mechatronics solutions to explore and harness this challenging environment. Automated tracking of these types of industries and the marine life around them can help us figure out what's causing the current changes in species numbers, predict what could happen in the future, and create the right policies to help reduce the environmental impact and make the planet more sustainable. The objective of this study is to create a new platform for the automated detection of irregularly shaped man-made marine objects (ISMMMOs) in large datasets derived from marine aerial survey imagery. In this context, a novel nonparametric methodology, which harbours several hybrid statistical Machine Learning (ML) methods, was developed to automatically segment ISMMMOs on the sea surface in large surveys. This methodology was validated on a wide range of marine domains, providing robust empirical proof of concept. This approach enables the detection of ISMMMOs automatically, without any prior training, with accuracy (ACC), Matthews correlation coefficient (MCC), negative predictive value (NPV), positive predictive value (PPV), specificity (Sp) and sensitivity(Se) over 0.95. The outlined methodology can be utilised for a variety of purposes, but it's especially useful for researchers and policymakers who want to keep an eye on how the maritime industry is deploying and make sure the right policies are in place to meet regulatory and legal requirements to promote maritime tech innovation and shape what the future looks like for the marine ecosystem. For the first time in the literature, a method, the so-called ISMMMOD, has been developed to automate the detection of all types of ISMMMOs by statistical ML techniques that require no prior training, which will pioneer the monitoring of human footprint in the marine ecosystem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速的念芹完成签到 ,获得积分10
7秒前
张润泽完成签到 ,获得积分10
12秒前
砳熠完成签到 ,获得积分10
12秒前
jameslee04完成签到 ,获得积分10
17秒前
18秒前
谨慎鹏涛完成签到 ,获得积分10
20秒前
思源应助科研通管家采纳,获得10
23秒前
23秒前
29秒前
嫁个养熊猫的完成签到 ,获得积分10
35秒前
鱼羊鲜发布了新的文献求助10
35秒前
Grey完成签到 ,获得积分10
37秒前
健忘的晓小完成签到 ,获得积分10
39秒前
zgt01完成签到 ,获得积分10
44秒前
鞑靼完成签到 ,获得积分10
51秒前
想上985完成签到 ,获得积分10
51秒前
joan完成签到 ,获得积分10
52秒前
妇产科医生完成签到 ,获得积分10
1分钟前
Zheng完成签到 ,获得积分10
1分钟前
豆腐青菜雨完成签到 ,获得积分10
1分钟前
离我远点完成签到 ,获得积分10
1分钟前
qq158014169完成签到 ,获得积分10
1分钟前
liuyq0501完成签到,获得积分0
1分钟前
whitepiece完成签到,获得积分10
1分钟前
彩云追月完成签到 ,获得积分10
1分钟前
玺青一生完成签到 ,获得积分10
1分钟前
ROMANTIC完成签到 ,获得积分10
1分钟前
寡妇哥完成签到 ,获得积分10
1分钟前
meimale完成签到,获得积分10
1分钟前
并不瑶远完成签到 ,获得积分10
1分钟前
科研狗完成签到 ,获得积分0
1分钟前
ran完成签到 ,获得积分10
1分钟前
青黛完成签到 ,获得积分10
1分钟前
luan完成签到,获得积分10
1分钟前
1分钟前
四月是你的谎言完成签到 ,获得积分10
1分钟前
优雅的帅哥完成签到 ,获得积分10
1分钟前
Tibbar完成签到 ,获得积分10
2分钟前
怡然白竹完成签到 ,获得积分10
2分钟前
Akim应助夏林采纳,获得10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Face recognition: challenges,achievementsandfuture directions. 400
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847893
求助须知:如何正确求助?哪些是违规求助? 3390526
关于积分的说明 10561737
捐赠科研通 3110924
什么是DOI,文献DOI怎么找? 1714590
邀请新用户注册赠送积分活动 825289
科研通“疑难数据库(出版商)”最低求助积分说明 775471