Interpretable Machine Learning Model to Predict Bone Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fracture Based on SHapley Additive exPlanations

医学 水泥 椎体压缩性骨折 骨水泥 逻辑回归 骨质疏松症 泄漏(经济) 外科 牙科 内科学 复合材料 宏观经济学 材料科学 经济
作者
Yili Hu,Peiyang Wang,Zhi‐Yang Xie,Guan-Rui Ren,Cong Zhang,Hangyu Ji,Xinhui Xie,Suyang Zhuang,Xiao‐Tao Wu
出处
期刊:Global Spine Journal [SAGE Publishing]
被引量:3
标识
DOI:10.1177/21925682231204159
摘要

Study Design Retrospective study. Objectives Our objective is to create comprehensible machine learning (ML) models that can forecast bone cement leakage in percutaneous vertebral augmentation (PVA) for individuals with osteoporotic vertebral compression fracture (OVCF) while also identifying the associated risk factors. Methods We incorporated data from patients (n = 425) which underwent PVA. To predict cement leakage, we devised six models based on a variety of parameters. Evaluate and juxtapose the predictive performances relied on measures of discrimination, calibration, and clinical utility. SHapley Additive exPlanations (SHAP) methodology was used to interpret model and evaluate the risk factors associated with cement leakage. Results The occurrence rate of cement leakage was established at 50.4%. A binary logistic regression analysis identified cortical disruption (OR 6.880, 95% CI 4.209-11.246), the basivertebral foramen sign (OR 2.142, 95% CI 1.303-3.521), the fracture type (OR 1.683, 95% CI 1.083-2.617), and the volume of bone cement (OR 1.198, 95% CI 1.070-1.341) as independent predictors of cement leakage. The XGBoost model outperformed all others in predicting cement leakage in the testing set, with AUC of .8819, accuracy of .8025, recall score of .7872, F1 score of .8315, and a precision score of .881. Several important factors related to cement leakage were drawn based on the analysis of SHAP values and their clinical significance. Conclusion The ML based predictive model demonstrated significant accuracy in forecasting bone cement leakage for patients with OVCF undergoing PVA. When combined with SHAP, ML facilitated a personalized prediction and offered a visual interpretation of feature importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zbzfp完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
南冥完成签到 ,获得积分10
1秒前
andrele完成签到,获得积分10
1秒前
2秒前
和谐幻柏发布了新的文献求助20
2秒前
tjfwg完成签到,获得积分10
2秒前
ekdjk发布了新的文献求助10
2秒前
YY发布了新的文献求助10
2秒前
dingding发布了新的文献求助10
2秒前
2秒前
云襄发布了新的文献求助10
3秒前
田様应助七七采纳,获得10
5秒前
吴晨曦发布了新的文献求助20
5秒前
泊声发布了新的文献求助40
5秒前
云雨发布了新的文献求助10
5秒前
敏子完成签到,获得积分10
7秒前
在水一方应助德鲁猪采纳,获得10
7秒前
8秒前
tian发布了新的文献求助50
8秒前
10秒前
咚咚锵发布了新的文献求助10
10秒前
热心市民应助lmg采纳,获得10
11秒前
mm完成签到,获得积分10
11秒前
JamesPei应助andrele采纳,获得10
12秒前
大方抽屉发布了新的文献求助10
13秒前
万能图书馆应助给好评采纳,获得10
13秒前
13秒前
RenLuna完成签到,获得积分10
14秒前
14秒前
昏睡的乌冬面完成签到 ,获得积分10
15秒前
JAYZHANG发布了新的文献求助10
15秒前
15秒前
爆米花应助Weiyu采纳,获得10
16秒前
16秒前
Jasper应助鹂鹂复霖霖采纳,获得10
17秒前
七七发布了新的文献求助10
17秒前
mm发布了新的文献求助10
17秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Neoliberalism as Exception 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829872
求助须知:如何正确求助?哪些是违规求助? 3372453
关于积分的说明 10472306
捐赠科研通 3091969
什么是DOI,文献DOI怎么找? 1701615
邀请新用户注册赠送积分活动 818527
科研通“疑难数据库(出版商)”最低求助积分说明 770942