Towards Sustainability-aware Recommender Systems: Analyzing the Trade-off Between Algorithms Performance and Carbon Footprint

碳足迹 计算机科学 推荐系统 足迹 算法 持续性 能源消耗 实施 消费(社会学) 生态足迹 机器学习 温室气体 工程类 软件工程 生态学 古生物学 社会学 电气工程 生物 社会科学
作者
Giuseppe Spillo,Allegra De Filippo,Cataldo Musto,Michela Milano,Giovanni Semeraro
标识
DOI:10.1145/3604915.3608840
摘要

In this paper, we present a comparative analysis of the trade-off between the performance of state-of-the-art recommendation algorithms and their environmental impact. In particular, we compared 18 popular recommendation algorithms in terms of both performance metrics (i.e., accuracy and diversity of the recommendations) as well as in terms of energy consumption and carbon footprint on three different datasets. In order to obtain a fair comparison, all the algorithms were run based on the implementations available in a popular recommendation library, i.e., RecBole, and used the same experimental settings. The outcomes of the experiments showed that the choice of the optimal recommendation algorithm requires a thorough analysis, since more sophisticated algorithms often led to tiny improvements at the cost of an exponential increase of carbon emissions. Through this paper, we aim to shed light on the problem of carbon footprint and energy consumption of recommender systems, and we make the first step towards the development of sustainability-aware recommendation algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
2秒前
itachi完成签到,获得积分10
2秒前
西瓜霜发布了新的文献求助10
2秒前
慕青应助MR_Z采纳,获得10
2秒前
yvonne发布了新的文献求助20
2秒前
李健应助合适的落落采纳,获得10
3秒前
黄建林发布了新的文献求助10
3秒前
Helium完成签到,获得积分10
4秒前
4秒前
科研通AI5应助害羞聋五采纳,获得10
5秒前
土豆子发布了新的文献求助10
5秒前
打打应助Raizel采纳,获得10
5秒前
sss发布了新的文献求助10
5秒前
chahun发布了新的文献求助10
5秒前
甜酒汤圆发布了新的文献求助10
7秒前
QxQ完成签到,获得积分20
8秒前
小马哥完成签到,获得积分10
8秒前
安年发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
研友_p完成签到,获得积分10
12秒前
12秒前
慕青应助Rishel_Li采纳,获得10
12秒前
传奇3应助一夜暴富采纳,获得10
13秒前
13秒前
honda完成签到,获得积分10
14秒前
Bear发布了新的文献求助10
14秒前
今后应助Singularity采纳,获得10
14秒前
善学以致用应助扶风采纳,获得10
14秒前
良辰应助SHIJIE采纳,获得10
15秒前
16秒前
16秒前
冰魂应助xxl采纳,获得10
16秒前
16秒前
wdaf发布了新的文献求助10
17秒前
MR_Z发布了新的文献求助10
17秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831948
求助须知:如何正确求助?哪些是违规求助? 3374282
关于积分的说明 10484141
捐赠科研通 3094156
什么是DOI,文献DOI怎么找? 1703342
邀请新用户注册赠送积分活动 819390
科研通“疑难数据库(出版商)”最低求助积分说明 771472