Deformable lung 4DCT image registration via landmark‐driven cycle network

地标 鉴别器 人工智能 计算机科学 图像配准 发电机(电路理论) 计算机视觉 深度学习 正规化(语言学) 图像(数学) 模式识别(心理学) 量子力学 电信 探测器 物理 功率(物理)
作者
Luke A. Matkovic,Yang Lei,Yabo Fu,Tonghe Wang,Aparna H. Kesarwala,Marian Axente,Justin Roper,Kristin Higgins,Jeffrey D. Bradley,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1974-1984 被引量:1
标识
DOI:10.1002/mp.16738
摘要

Abstract Background An automated, accurate, and efficient lung four‐dimensional computed tomography (4DCT) image registration method is clinically important to quantify respiratory motion for optimal motion management. Purpose The purpose of this work is to develop a weakly supervised deep learning method for 4DCT lung deformable image registration (DIR). Methods The landmark‐driven cycle network is proposed as a deep learning platform that performs DIR of individual phase datasets in a simulation 4DCT. This proposed network comprises a generator and a discriminator. The generator accepts moving and target CTs as input and outputs the deformation vector fields (DVFs) to match the two CTs. It is optimized during both forward and backward paths to enhance the bi‐directionality of DVF generation. Further, the landmarks are used to weakly supervise the generator network. Landmark‐driven loss is used to guide the generator's training. The discriminator then judges the realism of the deformed CT to provide extra DVF regularization. Results We performed four‐fold cross‐validation on 10 4DCT datasets from the public DIR‐Lab dataset and a hold‐out test on our clinic dataset, which included 50 4DCT datasets. The DIR‐Lab dataset was used to evaluate the performance of the proposed method against other methods in the literature by calculating the DIR‐Lab Target Registration Error (TRE). The proposed method outperformed other deep learning‐based methods on the DIR‐Lab datasets in terms of TRE. Bi‐directional and landmark‐driven loss were shown to be effective for obtaining high registration accuracy. The mean and standard deviation of TRE for the DIR‐Lab datasets was 1.20 ± 0.72 mm and the mean absolute error (MAE) and structural similarity index (SSIM) for our datasets were 32.1 ± 11.6 HU and 0.979 ± 0.011, respectively. Conclusion The landmark‐driven cycle network has been validated and tested for automatic deformable image registration of patients’ lung 4DCTs with results comparable to or better than competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cili发布了新的文献求助10
刚刚
十一发布了新的文献求助10
1秒前
777完成签到,获得积分10
1秒前
李健的小迷弟应助韦涔采纳,获得10
2秒前
mudoo完成签到,获得积分10
3秒前
大虫子完成签到,获得积分10
5秒前
完美世界应助畅快自行车采纳,获得10
6秒前
香草冰淇淋完成签到,获得积分10
7秒前
Swim完成签到,获得积分20
7秒前
友好绮兰完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
直角圆圈完成签到,获得积分10
13秒前
善学以致用应助YJL采纳,获得10
13秒前
13秒前
14秒前
14秒前
mouxq发布了新的文献求助10
15秒前
17秒前
17秒前
如此这般完成签到 ,获得积分10
18秒前
学术通zzz发布了新的文献求助10
18秒前
含蓄的垣完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
22秒前
林zp完成签到,获得积分10
23秒前
Orange应助忧心的冬天采纳,获得10
23秒前
24秒前
标致的远望完成签到,获得积分10
25秒前
小二郎应助YY-Bubble采纳,获得10
26秒前
26秒前
张成协发布了新的文献求助10
27秒前
qu完成签到 ,获得积分10
28秒前
呆萌的冬瓜完成签到,获得积分10
29秒前
xluo215发布了新的文献求助10
29秒前
小席要进步完成签到 ,获得积分10
32秒前
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818977
求助须知:如何正确求助?哪些是违规求助? 3362055
关于积分的说明 10415138
捐赠科研通 3080350
什么是DOI,文献DOI怎么找? 1694313
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768365