亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

KD-LightNet: A Lightweight Network Based on Knowledge Distillation for Industrial Defect Detection

计算机科学 蒸馏 目标检测 人工智能 GSM演进的增强数据速率 特征提取 学习迁移 机器学习 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 实时计算 语言学 化学 哲学 有机化学
作者
Jinhai Liu,Hengguang Li,Fengyuan Zuo,Zhen Zhao,Senxiang Lu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:38
标识
DOI:10.1109/tim.2023.3300421
摘要

At present, the method based on deep learning performs well in public object detection tasks. However, there are still two problems to be solved for industrial defect detection: 1) Industrial scenes requires real-time and lightweight; 2) Lightweight network accuracy is limited. In order to tackle these issues, based on knowledge distillation, this paper proposes an effective lightweight defect detection network (KD-LightNet) suitable for edge scene. First of all, a lightweight network (LightNet) is designed based on structure reparameterization, which can sufficiently improve the capability of network feature extraction and reduce the complexity of model inferring. Moreover, a well prepared self-distillation strategy is proposed, which utilize the pre-trained LightNet network as a teacher model to transfer knowledge in the same structure. Then, in order to fully utilize the logits predicted by teacher model, an improved KL divergence loss is proposed to enhance the accuracy of the student model. Finally, in the experiments, three industrial datasets (PKU-Market-PCB, NEU-DET and Magnetic tile defect dataset) were used to validate the proposed model performance. The KD-LightNet detection accuracy (mAP) is improved by an average of 6.87%, while the average detection speed reaches 72 FPS @3070Ti (Params 4.7M), which meets the requirements of industrial defect detection accuracy and real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
刚刚
ceeray23应助科研通管家采纳,获得10
刚刚
Akim应助佳佳采纳,获得10
4秒前
12秒前
NexusExplorer应助huaixup采纳,获得10
28秒前
39秒前
佳佳发布了新的文献求助10
44秒前
狂野的含烟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Said1223发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
Gryphon发布了新的文献求助10
2分钟前
2分钟前
huaixup发布了新的文献求助10
2分钟前
huaixup完成签到 ,获得积分10
2分钟前
小马甲应助yf采纳,获得10
2分钟前
3分钟前
简单的莫言完成签到,获得积分10
3分钟前
3分钟前
3分钟前
yf发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
NattyPoe应助科研通管家采纳,获得10
4分钟前
NattyPoe应助科研通管家采纳,获得10
4分钟前
4分钟前
善学以致用应助额哦采纳,获得30
4分钟前
打打应助Chouvikin采纳,获得10
4分钟前
5分钟前
额哦关注了科研通微信公众号
5分钟前
Chouvikin发布了新的文献求助10
5分钟前
5分钟前
额哦发布了新的文献求助30
5分钟前
小二郎应助lawang采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585