清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 生物 替代医学 纯数学 古生物学 病理 数据库 医学 数学 教育学 心理学
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:115
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
beihaik完成签到 ,获得积分10
20秒前
糊涂的青烟完成签到 ,获得积分10
32秒前
GankhuyagJavzan完成签到,获得积分10
1分钟前
香蕉觅云应助一个小胖子采纳,获得10
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
望舒应助一个小胖子采纳,获得10
1分钟前
xianwen完成签到 ,获得积分10
1分钟前
小蚂蚁完成签到 ,获得积分10
1分钟前
桐桐应助一个小胖子采纳,获得10
1分钟前
年轻的孤晴完成签到 ,获得积分10
1分钟前
cc完成签到,获得积分10
1分钟前
完美世界应助一个小胖子采纳,获得10
2分钟前
不安的松完成签到 ,获得积分10
2分钟前
赘婿应助一个小胖子采纳,获得10
2分钟前
小二郎应助一个小胖子采纳,获得10
2分钟前
青出于蓝蔡完成签到,获得积分10
2分钟前
852应助无辜的雪花采纳,获得10
2分钟前
无花果应助一个小胖子采纳,获得10
2分钟前
sci完成签到,获得积分10
3分钟前
Jiang应助一个小胖子采纳,获得10
3分钟前
3分钟前
3分钟前
又又完成签到 ,获得积分10
3分钟前
隐形曼青应助一个小胖子采纳,获得10
3分钟前
研究新人完成签到,获得积分10
3分钟前
脑洞疼应助一个小胖子采纳,获得10
3分钟前
尊敬的小凡完成签到,获得积分10
3分钟前
研友_ngqoE8完成签到,获得积分10
4分钟前
李健应助一个小胖子采纳,获得10
4分钟前
共享精神应助一个小胖子采纳,获得10
4分钟前
宁霸完成签到,获得积分0
4分钟前
4分钟前
温柔的柠檬完成签到 ,获得积分10
4分钟前
上官若男应助一个小胖子采纳,获得10
5分钟前
房天川完成签到 ,获得积分10
5分钟前
酷波er应助一个小胖子采纳,获得10
5分钟前
zhangjianzeng完成签到 ,获得积分10
5分钟前
wanci应助一个小胖子采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4754038
求助须知:如何正确求助?哪些是违规求助? 4098078
关于积分的说明 12678937
捐赠科研通 3811570
什么是DOI,文献DOI怎么找? 2104239
邀请新用户注册赠送积分活动 1129430
关于科研通互助平台的介绍 1006931