A risk assessment framework for multidrug-resistant Staphylococcus aureus using machine learning and mass spectrometry technology

克林霉素 背景(考古学) 多重耐药 抗生素 金黄色葡萄球菌 抗生素耐药性 抗药性 医学 微生物学 生物 细菌 遗传学 古生物学
作者
Zhuo Wang,Yuxuan Pang,Chia‐Ru Chung,Hsin‐Yao Wang,Haiyan Cui,Ying‐Chih Chiang,Jorng‐Tzong Horng,Jang‐Jih Lu,Tzong-Yi Lee
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6) 被引量:2
标识
DOI:10.1093/bib/bbad330
摘要

The emergence of multidrug-resistant bacteria is a critical global crisis that poses a serious threat to public health, particularly with the rise of multidrug-resistant Staphylococcus aureus. Accurate assessment of drug resistance is essential for appropriate treatment and prevention of transmission of these deadly pathogens. Early detection of drug resistance in patients is critical for providing timely treatment and reducing the spread of multidrug-resistant bacteria. This study aims to develop a novel risk assessment framework for S. aureus that can accurately determine the resistance to multiple antibiotics. The comprehensive 7-year study involved ˃20 000 isolates with susceptibility testing profiles of six antibiotics. By incorporating mass spectrometry and machine learning, the study was able to predict the susceptibility to four different antibiotics with high accuracy. To validate the accuracy of our models, we externally tested on an independent cohort and achieved impressive results with an area under the receiver operating characteristic curve of 0. 94, 0.90, 0.86 and 0.91, and an area under the precision-recall curve of 0.93, 0.87, 0.87 and 0.81, respectively, for oxacillin, clindamycin, erythromycin and trimethoprim-sulfamethoxazole. In addition, the framework evaluated the level of multidrug resistance of the isolates by using the predicted drug resistance probabilities, interpreting them in the context of a multidrug resistance risk score and analyzing the performance contribution of different sample groups. The results of this study provide an efficient method for early antibiotic decision-making and a better understanding of the multidrug resistance risk of S. aureus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gorgeousgaga完成签到,获得积分10
1秒前
搜集达人应助卡卡啊采纳,获得10
2秒前
3秒前
彬子发布了新的文献求助10
4秒前
我爱学习完成签到 ,获得积分10
5秒前
lqphysics发布了新的文献求助10
5秒前
独弦清音发布了新的文献求助10
5秒前
DQY发布了新的文献求助10
7秒前
7秒前
9秒前
Pjmeng发布了新的文献求助10
10秒前
10秒前
10秒前
刘芳菲发布了新的文献求助10
11秒前
11秒前
潇涯发布了新的文献求助10
11秒前
11秒前
学术小垃圾完成签到,获得积分10
11秒前
11秒前
赘婿应助XUNGEER11采纳,获得10
12秒前
12秒前
12秒前
传奇3应助独弦清音采纳,获得10
12秒前
卡卡啊发布了新的文献求助10
14秒前
NN发布了新的文献求助30
14秒前
14秒前
SciGPT应助烟火里的尘埃采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
zho应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
zho应助科研通管家采纳,获得10
15秒前
优雅的紫寒完成签到,获得积分10
15秒前
情怀应助科研通管家采纳,获得30
15秒前
xfeng应助科研通管家采纳,获得10
15秒前
15秒前
醉爱星星完成签到,获得积分10
16秒前
16秒前
天妒嘤才发布了新的文献求助10
16秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829234
求助须知:如何正确求助?哪些是违规求助? 3371936
关于积分的说明 10469766
捐赠科研通 3091535
什么是DOI,文献DOI怎么找? 1701173
邀请新用户注册赠送积分活动 818199
科研通“疑难数据库(出版商)”最低求助积分说明 770765