Instance segmentation of individual tree crowns with YOLOv5: A comparison of approaches using the ForInstance benchmark LiDAR dataset

分割 计算机科学 激光雷达 点云 水准点(测量) 树(集合论) 卷积神经网络 人工智能 遥感 模式识别(心理学) 数据挖掘 机器学习 地图学 地理 数学 数学分析
作者
Adrian Straker,Stefano Puliti,Johannes Breidenbach,Christoph Kleinn,Grant D. Pearse,Rasmus Astrup,Paul Magdon
出处
期刊:ISPRS open journal of photogrammetry and remote sensing [Elsevier]
卷期号:9: 100045-100045 被引量:1
标识
DOI:10.1016/j.ophoto.2023.100045
摘要

Fine-grained information on the level of individual trees constitute key components for forest observation enabling forest management practices tackling the effects of climate change and the loss of biodiversity in forest ecosystems. Such information on individual tree crowns (ITC's) can be derived from the application of ITC segmentation approaches, which utilize remotely sensed data. However, many ITC segmentation approaches require prior knowledge about forest characteristics, which is difficult to obtain for parameterization. This can be avoided by the adoption of data-driven, automated workflows based on convolutional neural networks (CNN). To contribute to the advancements of efficient ITC segmentation approaches, we present a novel ITC segmentation approach based on the YOLOv5 CNN. We analyzed the performance of this approach on a comprehensive international unmanned aerial laser scanning (UAV-LS) dataset (ForInstance), which covers a wide range of forest types. The ForInstance dataset consists of 4192 individually annotated trees in high-density point clouds with point densities ranging from 498 to 9529 points m-2 collected across 80 sites. The original dataset was split into 70% for training and validation and 30% for model performance assessment (test data). For the best performing model, we observed a F1-score of 0.74 for ITC segmentation and a tree detection rate (DET %) of 64% in the test data. This model outperformed an ITC segmentation approach, which requires prior knowledge about forest characteristics, by 41% and 33% for F1-score and DET %, respectively. Furthermore, we tested the effects of reduced point densities (498, 50 and 10 points per m-2) on ITC segmentation performance. The YOLO model exhibited promising F1-scores of 0.69 and 0.62 even at point densities of 50 and 10 points m-2, respectively, which were between 27% and 34% better than the ITC approach that requires prior knowledge. Furthermore, the areas of ITC segments resulting from the application of the best performing YOLO model were close to the reference areas (RMSE = 3.19 m-2), suggesting that the YOLO-derived ITC segments can be used to derive information on ITC level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿哲完成签到,获得积分10
刚刚
广州东站完成签到,获得积分10
1秒前
good233完成签到,获得积分10
1秒前
坚定尔蓝完成签到,获得积分10
1秒前
2秒前
吕健完成签到,获得积分10
3秒前
4秒前
twotwo的小乌龟完成签到 ,获得积分10
5秒前
Lyw完成签到 ,获得积分10
5秒前
charry发布了新的文献求助10
6秒前
锦鲤完成签到 ,获得积分10
6秒前
shotaro发布了新的文献求助10
6秒前
Fighter发布了新的文献求助10
7秒前
朴素的幻然完成签到,获得积分10
7秒前
鳗鱼涵梅完成签到,获得积分10
7秒前
谦让的越泽完成签到,获得积分10
8秒前
大仙完成签到,获得积分10
9秒前
金金完成签到 ,获得积分10
9秒前
感动城完成签到,获得积分10
12秒前
Fighter完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
篮孩子完成签到,获得积分10
14秒前
Singularity应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
俭朴的乐巧完成签到 ,获得积分10
14秒前
严锦强完成签到,获得积分10
16秒前
zhuxd完成签到,获得积分10
17秒前
17秒前
CAE上路到上吊完成签到,获得积分10
18秒前
19秒前
yeyuchenfeng完成签到,获得积分10
26秒前
26秒前
du完成签到 ,获得积分10
26秒前
大白菜发布了新的文献求助10
27秒前
shotaro完成签到,获得积分10
27秒前
Rita完成签到,获得积分10
28秒前
霸气南珍发布了新的文献求助10
28秒前
xiang完成签到,获得积分20
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4243427
求助须知:如何正确求助?哪些是违规求助? 3776859
关于积分的说明 11856880
捐赠科研通 3431265
什么是DOI,文献DOI怎么找? 1883038
邀请新用户注册赠送积分活动 934999
科研通“疑难数据库(出版商)”最低求助积分说明 841468