Multi-domain medical image translation generation for lung image classification based on generative adversarial networks

计算机科学 图像翻译 人工智能 翻译(生物学) 图像(数学) 领域(数学分析) 钥匙(锁) 发电机(电路理论) 医学影像学 模式识别(心理学) 图像质量 计算机视觉 数学 数学分析 生物化学 化学 信使核糖核酸 基因 功率(物理) 物理 计算机安全 量子力学
作者
Yunfeng Chen,Ya‐Lan Lin,Xiaodie Xu,Jinzhen Ding,Chuzhao Li,Yiming Zeng,Weifang Xie,Jianlong Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107200-107200 被引量:19
标识
DOI:10.1016/j.cmpb.2022.107200
摘要

Lung image classification-assisted diagnosis has a large application market. Aiming at the problems of poor attention to existing translation models, the insufficient ability of key transfer and generation, insufficient quality of generated images, and lack of detailed features, this paper conducts research on lung medical image translation and lung image classification based on generative adversarial networks.This paper proposes a medical image multi-domain translation algorithm MI-GAN based on the key migration branch. After the actual analysis of the imbalanced medical image data, the key target domain images are selected, the key migration branch is established, and a single generator is used to complete the medical image multi-domain translation. The conversion between domains ensures the attention performance of the medical image multi-domain translation model and the quality of the synthesized images. At the same time, a lung image classification model based on synthetic image data augmentation is proposed. The synthetic lung CT medical images and the original real medical images are used as the training set together to study the performance of the auxiliary diagnosis model in the classification of normal healthy subjects, and also of the mild and severe COVID-19 patients.Based on the chest CT image dataset, MI-GAN has completed the mutual conversion and generation of normal lung images without disease, viral pneumonia and Mild COVID-19 images. The synthetic images GAN-test and GAN-train indicators reached, respectively 92.188% and 85.069%, compared with other generative models in terms of authenticity and diversity, there is a considerable improvement. The accuracy rate of pneumonia diagnosis of the lung image classification model is 93.85%, which is 3.1% higher than that of the diagnosis model trained only with real images; the sensitivity of disease diagnosis is 96.69%, a relative improvement of 7.1%. 1%, the specificity was 89.70%; the area under the ROC curve (AUC) increased from 94.00% to 96.17%.In this paper, a multi-domain translation model of medical images based on the key transfer branch is proposed, which enables the translation network to have key transfer and attention performance. It is verified on lung CT images and achieved good results. The required medical images are synthesized by the above medical image translation model, and the effectiveness of the synthesized images on the lung image classification network is verified experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaxin完成签到,获得积分10
1秒前
3秒前
4秒前
wang发布了新的文献求助10
4秒前
A9W01U发布了新的文献求助10
5秒前
Hello应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
kingwill应助科研通管家采纳,获得30
9秒前
科研助手6应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
Anna完成签到,获得积分10
13秒前
13秒前
逻辑发布了新的文献求助10
14秒前
花肠完成签到,获得积分10
14秒前
风趣的野狼完成签到,获得积分10
15秒前
wang完成签到,获得积分10
16秒前
fawr完成签到 ,获得积分10
17秒前
元宵完成签到 ,获得积分10
17秒前
无私妙菡完成签到,获得积分10
17秒前
18秒前
迷人的寒风完成签到,获得积分10
18秒前
18秒前
南一完成签到 ,获得积分10
22秒前
花痴的谷雪完成签到,获得积分10
23秒前
那个笨笨发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
Gentleman完成签到,获得积分10
27秒前
隐形曼青应助freshman采纳,获得10
28秒前
CC发布了新的文献求助10
29秒前
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802457
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336264
捐赠科研通 3064007
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997