A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks

计算机科学 稳健性(进化) 聚类分析 人工智能 人工神经网络 卷积神经网络 机器学习 深度学习 深层神经网络 数据集 数据挖掘 生物化学 化学 基因
作者
Yara Kayyali Elalem,Sebastian Maier,Ralf W. Seifert
出处
期刊:International Journal of Forecasting [Elsevier BV]
卷期号:39 (4): 1874-1894 被引量:26
标识
DOI:10.1016/j.ijforecast.2022.09.005
摘要

Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales of newly launched, short-lived products that are similar to previous products when there is limited availability of historical sales data for the new product. In addition to exploiting historical data using time-series clustering, we perform data augmentation to generate sufficient sales data and consider two quantitative cluster assignment methods. We apply one traditional statistical (ARIMAX) and three machine learning methods based on deep neural networks (DNNs) – long short-term memory, gated recurrent units, and convolutional neural networks. Using two large data sets, we investigate the forecasting methods' comparative performance and, for the larger data set, show that clustering generally results in substantially lower forecast errors. Our key empirical finding is that simple ARIMAX considerably outperforms the more advanced DNNs, with mean absolute errors up to 21%–24% lower. However, when adding Gaussian white noise in our robustness analysis, we find that ARIMAX's performance deteriorates dramatically, whereas the considered DNNs display robust performance. Our results provide insights for practitioners on when to use advanced deep learning methods and when to use traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DJ发布了新的文献求助10
刚刚
打打应助cici采纳,获得10
刚刚
虎啸山河发布了新的文献求助10
刚刚
1秒前
1秒前
上官若男应助ljpsjdsm采纳,获得10
1秒前
科研通AI5应助阳娅丽采纳,获得10
1秒前
slb1319完成签到,获得积分10
1秒前
欢喜的小天鹅完成签到 ,获得积分10
2秒前
dddddd发布了新的文献求助10
2秒前
科研通AI5应助小萝莉采纳,获得10
2秒前
Owen应助未末木采纳,获得10
2秒前
2秒前
Hyp完成签到 ,获得积分10
3秒前
科研通AI5应助钰宁采纳,获得10
3秒前
sduweiyu完成签到 ,获得积分10
3秒前
kiki发布了新的文献求助30
3秒前
Jiro完成签到,获得积分10
3秒前
3秒前
科研通AI5应助ljh采纳,获得10
5秒前
5秒前
6秒前
6秒前
ANDRT发布了新的文献求助10
6秒前
赘婿应助海洋之心采纳,获得10
6秒前
cc发布了新的文献求助10
6秒前
唯唯发布了新的文献求助10
7秒前
7秒前
CipherSage应助积极的白晴采纳,获得10
8秒前
10秒前
可行完成签到,获得积分10
12秒前
柯金浩完成签到,获得积分10
12秒前
13秒前
香蕉觅云应助WZJ采纳,获得10
13秒前
13秒前
小萝莉发布了新的文献求助10
13秒前
dox应助dddddd采纳,获得10
15秒前
zho应助dddddd采纳,获得10
15秒前
15秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848493
求助须知:如何正确求助?哪些是违规求助? 3391324
关于积分的说明 10566916
捐赠科研通 3111905
什么是DOI,文献DOI怎么找? 1714971
邀请新用户注册赠送积分活动 825536
科研通“疑难数据库(出版商)”最低求助积分说明 775623