Generative AI in healthcare: an implementation science informed translational path on application, integration and governance

医疗保健 健康信息学 生成语法 知识管理 卫生行政 公司治理 过程管理 医学 人工智能 计算机科学 公共卫生 业务 护理部 政治学 财务 法学
作者
Sandeep Reddy
出处
期刊:Implementation Science [Springer Nature]
卷期号:19 (1): 27-27 被引量:316
标识
DOI:10.1186/s13012-024-01357-9
摘要

Abstract Background Artificial intelligence (AI), particularly generative AI, has emerged as a transformative tool in healthcare, with the potential to revolutionize clinical decision-making and improve health outcomes. Generative AI, capable of generating new data such as text and images, holds promise in enhancing patient care, revolutionizing disease diagnosis and expanding treatment options. However, the utility and impact of generative AI in healthcare remain poorly understood, with concerns around ethical and medico-legal implications, integration into healthcare service delivery and workforce utilisation. Also, there is not a clear pathway to implement and integrate generative AI in healthcare delivery. Methods This article aims to provide a comprehensive overview of the use of generative AI in healthcare, focusing on the utility of the technology in healthcare and its translational application highlighting the need for careful planning, execution and management of expectations in adopting generative AI in clinical medicine. Key considerations include factors such as data privacy, security and the irreplaceable role of clinicians’ expertise. Frameworks like the technology acceptance model (TAM) and the Non-Adoption, Abandonment, Scale-up, Spread and Sustainability (NASSS) model are considered to promote responsible integration. These frameworks allow anticipating and proactively addressing barriers to adoption, facilitating stakeholder participation and responsibly transitioning care systems to harness generative AI’s potential. Results Generative AI has the potential to transform healthcare through automated systems, enhanced clinical decision-making and democratization of expertise with diagnostic support tools providing timely, personalized suggestions. Generative AI applications across billing, diagnosis, treatment and research can also make healthcare delivery more efficient, equitable and effective. However, integration of generative AI necessitates meticulous change management and risk mitigation strategies. Technological capabilities alone cannot shift complex care ecosystems overnight; rather, structured adoption programs grounded in implementation science are imperative. Conclusions It is strongly argued in this article that generative AI can usher in tremendous healthcare progress, if introduced responsibly. Strategic adoption based on implementation science, incremental deployment and balanced messaging around opportunities versus limitations helps promote safe, ethical generative AI integration. Extensive real-world piloting and iteration aligned to clinical priorities should drive development. With conscientious governance centred on human wellbeing over technological novelty, generative AI can enhance accessibility, affordability and quality of care. As these models continue advancing rapidly, ongoing reassessment and transparent communication around their strengths and weaknesses remain vital to restoring trust, realizing positive potential and, most importantly, improving patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蓝天发布了新的文献求助10
2秒前
科研桃完成签到 ,获得积分10
3秒前
leihappy发布了新的文献求助10
3秒前
4秒前
合适的楷瑞完成签到,获得积分10
4秒前
4秒前
4秒前
BruceYuan发布了新的文献求助10
5秒前
科研通AI6应助aliu采纳,获得10
6秒前
材料人完成签到 ,获得积分10
6秒前
香蕉觅云应助友好初夏采纳,获得10
6秒前
yiheng完成签到,获得积分10
9秒前
10秒前
YG97发布了新的文献求助10
10秒前
蝶子王发布了新的文献求助10
11秒前
笨笨百招应助浮浮世世采纳,获得10
11秒前
小吴关注了科研通微信公众号
11秒前
zhangchy完成签到,获得积分10
11秒前
BruceYuan完成签到,获得积分10
12秒前
14秒前
15秒前
16秒前
冉冉完成签到 ,获得积分0
17秒前
xxt完成签到,获得积分10
17秒前
xuanqing发布了新的文献求助10
18秒前
爆米花应助YG97采纳,获得10
18秒前
18秒前
wwpapple发布了新的文献求助10
18秒前
zsyhcl应助Liu采纳,获得10
19秒前
22秒前
彩色凡柔完成签到,获得积分10
22秒前
韩德胜完成签到 ,获得积分10
24秒前
24秒前
25秒前
xuanqing完成签到,获得积分10
27秒前
wwpapple完成签到,获得积分10
27秒前
不爱看文献头疼完成签到 ,获得积分10
27秒前
Eason_C完成签到 ,获得积分10
27秒前
NexusExplorer应助Hommand_藏山采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638089
求助须知:如何正确求助?哪些是违规求助? 4744677
关于积分的说明 15001146
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562434
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481761