Deep transfer learning from limited source for abdominal CT and MR image segmentation

人工智能 计算机科学 图像分割 学习迁移 计算机视觉 分割
作者
Chetana Krishnan,Elizabeth Schmidt,Ezinwanne Onuoha,Michal Mrug,Carlos Cárdenas,Hyung Min Kim
标识
DOI:10.1117/12.3006814
摘要

Medical image segmentation benefits from machine learning advancements, offering potential automation. Yet, accuracy depends on substantial annotated data and significant computing resources. Transfer learning addresses these challenges by leveraging a model's knowledge from one task for another with minor adjustments. The idea is to adapt learned features to new tasks, even with differing datasets but shared characteristics. Studies explore the impact of using large source datasets for limited target datasets. This investigation focuses on transferring knowledge from a limited source to enhance model versatility across various tasks. Our goal involved transferring knowledge from an advanced model trained on T2 weighted MR images related to Autosomal Dominant Polycystic Kidney Disease (ADPKD) for kidney and cyst segmentation (referred to as "Lsource"). This transfer was directed towards five distinct target datasets: CT liver, CT kidneys, CT spleen, MRI kidneys, and CT multimodal data (target datasets 1 through 5). The primary objective was to achieve accurate segmentation on these target datasets while saving time and computational resources. This approach is especially valuable when obtaining a substantial, labeled mouse PKD MRI target dataset is challenging, and the source dataset itself is resource-intensive. Using transfer learning from source 1 onto target sets 1 to 5 resulted in mean Dice Similarity Coefficients (DSCs) of 0.94±0.04, 0.97±0.02, 0.95±0.03, 0.96±0.01, 0.93±0.02, respectively. Similarly, employing source 2 yielded mean DSCs of 0.95±0.04, 0.96±0.02, 0.95±0.02, 0.96±0.02, and 0.93±0.02 for the same target sets. Despite variations in pathological conditions, image characteristics, and imaging modalities, the transfer learning approach produced DSC values comparable to the initial published outcomes. This accomplishment was achieved with reduced training requirements, faster convergence times, and decreased computational complexities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
英俊的铭应助W查查采纳,获得10
刚刚
CipherSage应助Hello采纳,获得50
1秒前
1秒前
1秒前
丢硬币的小孩完成签到,获得积分10
2秒前
乐乐应助Mr.Ren采纳,获得10
2秒前
共享精神应助Cold-Drink-Shop采纳,获得10
2秒前
11111111完成签到,获得积分10
2秒前
多喝开开完成签到,获得积分10
2秒前
4秒前
小瓦片发布了新的文献求助10
5秒前
rk发布了新的文献求助10
5秒前
bdsb完成签到,获得积分10
6秒前
6秒前
沐沐完成签到,获得积分10
7秒前
7秒前
7秒前
JOJO完成签到,获得积分10
7秒前
幸运海星发布了新的文献求助10
8秒前
Dwen完成签到,获得积分10
8秒前
wd34发布了新的文献求助10
8秒前
我是老大应助小杨采纳,获得10
9秒前
李礼理锂鲤应助踏实松鼠采纳,获得10
9秒前
9秒前
爆炸boom完成签到 ,获得积分10
10秒前
10秒前
如意蚂蚁完成签到,获得积分10
10秒前
scwang应助wwv采纳,获得10
10秒前
常常完成签到,获得积分0
11秒前
科研通AI5应助沐沐采纳,获得10
12秒前
12秒前
假正经完成签到,获得积分10
12秒前
ding应助Q_123采纳,获得10
12秒前
刚子发布了新的文献求助10
13秒前
拉风中带点萌完成签到,获得积分20
13秒前
放放完成签到,获得积分10
13秒前
土豪的康发布了新的文献求助10
13秒前
科研通AI5应助三七采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190390
求助须知:如何正确求助?哪些是违规求助? 4374194
关于积分的说明 13620019
捐赠科研通 4227906
什么是DOI,文献DOI怎么找? 2319013
邀请新用户注册赠送积分活动 1317523
关于科研通互助平台的介绍 1267494