Simultaneous extraction of spatial and attributional building information across large-scale urban landscapes from high-resolution satellite imagery

比例(比率) 适应性 人工智能 城市规划 交叉口(航空) 分割 地理 数据挖掘 计算机科学 机器学习 地图学 土木工程 工程类 生态学 生物
作者
Zhen Qian,Min Chen,Zhuo Sun,Fan Zhang,Qingsong Xu,Jinzhao Guo,Zhiwei Xie,Zhixin Zhang
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:106: 105393-105393 被引量:5
标识
DOI:10.1016/j.scs.2024.105393
摘要

Understanding urban dynamics requires comprehensive building analysis, yet current methods focusing on specific aspects hinder the production of unified and large-scale inventories. This study introduces a multi-task deep learning network with a flexible architecture for simultaneously extracting spatial and attributional building information from high-resolution satellite images. This method efficiently segments rooftops and classifies buildings by urban function and architectural style of rooftops. Moreover, a strategic spatial sampling scheme from a data-centric perspective, informed by geographic and environmental diversity, optimizes the selection of representative samples to improve training efficiency and predictive accuracy. Comparative analyses demonstrate the framework's superior performance, achieving an F1 score of 84.30% and an intersection over union of 72.86% in rooftop segmentation, and Kappa scores of 74.67% and 70.04% in classifying urban functions and architectural types, outperforming other advanced models by 2% to 25% across various metrics. Additionally, the adaptability of the network ensures that the framework meets diverse accuracy and efficiency requirements. By applying the proposed methodology to Shanghai, a unified city-scale dataset is generated. This dataset underscores the practical applicability and potential influence of the proposed methods in the fields of urban studies and sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
闲听花落完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
Mss完成签到,获得积分10
3秒前
研友_8RlQ2n完成签到,获得积分10
4秒前
solitaty完成签到,获得积分10
4秒前
4秒前
haku驳回了Orange应助
5秒前
现代世德完成签到,获得积分10
5秒前
MARSDON发布了新的文献求助10
5秒前
蕃薯叶应助王小冉采纳,获得10
5秒前
fool发布了新的文献求助10
5秒前
科研通AI5应助王小冉采纳,获得10
5秒前
琳琳完成签到,获得积分10
5秒前
iVANPENNY应助NiKo采纳,获得10
6秒前
科研助手6应助NiKo采纳,获得10
6秒前
德芙发布了新的文献求助10
7秒前
amber完成签到 ,获得积分10
7秒前
7秒前
科研助手6应助相信...就好采纳,获得10
7秒前
8秒前
Lucas应助ZWK采纳,获得10
9秒前
墨墨发布了新的文献求助10
9秒前
sophie发布了新的文献求助10
10秒前
chever应助yixi采纳,获得30
10秒前
sasa完成签到,获得积分10
10秒前
安迪宝刚完成签到,获得积分10
10秒前
10秒前
12秒前
沉默的无施完成签到,获得积分10
13秒前
14秒前
研友_VZG7GZ应助宝福X暴富采纳,获得10
14秒前
充电宝应助高挑的含双采纳,获得10
14秒前
南风似潇发布了新的文献求助10
14秒前
Vivian发布了新的文献求助10
15秒前
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910