A Study of Human–AI Symbiosis for Creative Work: Recent Developments and Future Directions in Deep Learning

人工智能 计算机科学 领域(数学) 深度学习 人工智能应用 人类智力 领域(数学分析) 知识管理 数据科学 数学 数学分析 纯数学
作者
Bahar Uddin Mahmud,G.Y. Hong,Bernard Fong
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (2): 1-21 被引量:15
标识
DOI:10.1145/3542698
摘要

Recent advances in Artificial Intelligence (AI), particularly deep learning, are having an enormous impact on our society today. Record numbers of jobs previously held by people have been automated, from manufacturing to transportation to customer services. The concerns of AI replacing humans by taking over people's jobs need to be urgently addressed. This article investigates some promising different directions of AI development: Instead of using AI to replace people, we should use AI to team up with people so that both can work better and smarter. Human–AI symbiosis refers to people and AI working together to jointly solve problems and perform specific tasks. The recent developments in deep learning models and frameworks have significantly improved the efficiency and performance of human and AI collaborations. In this article, some research work on human–AI collaborative environments has been extensively studied and analyzed to reveal the progress in this field. Although the teaming of humans and machines includes many complex tasks, the development has been very promising. One of the main goals in this field is to develop additional capabilities in machines capable of being successful teammates with a human partner. The correctness of the outcomes is often determined by the underlying technology and how performance and human satisfaction are measured through the collaborative nature of the system. We conclude that the teaming of humans and AI, particularly deep learning, has the advantage of combining the power of AI with the human domain expertise to improve performance and create value. Human–AI symbiosis could be a promising future direction for AI's continuing integration into the world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学术通zzz发布了新的文献求助10
刚刚
天津中医药峰完成签到,获得积分10
1秒前
菠萝炒蛋加饭完成签到 ,获得积分10
2秒前
minino完成签到 ,获得积分10
3秒前
moon发布了新的文献求助10
5秒前
Judy完成签到 ,获得积分10
7秒前
11秒前
话哈哈完成签到,获得积分10
11秒前
su完成签到,获得积分10
15秒前
李健应助chrysan采纳,获得10
20秒前
顾矜应助ChencanFang采纳,获得20
20秒前
郝好完成签到 ,获得积分10
22秒前
25秒前
9℃完成签到 ,获得积分10
27秒前
sharks完成签到,获得积分10
28秒前
28秒前
天天快乐应助手可摘星辰采纳,获得10
29秒前
29秒前
29秒前
30秒前
lynn完成签到 ,获得积分10
31秒前
34秒前
123456完成签到 ,获得积分10
34秒前
学术通zzz发布了新的文献求助10
34秒前
王小乐发布了新的文献求助10
35秒前
一二发布了新的文献求助10
36秒前
黑糖珍珠完成签到 ,获得积分10
37秒前
Hello应助踏雪飞鸿采纳,获得10
37秒前
chrysan发布了新的文献求助10
38秒前
38秒前
42秒前
43秒前
cx完成签到 ,获得积分10
45秒前
稀饭发布了新的文献求助10
45秒前
ChencanFang发布了新的文献求助20
45秒前
46秒前
ll发布了新的文献求助10
51秒前
无辜的豌豆完成签到 ,获得积分10
51秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315