A Study of Human–AI Symbiosis for Creative Work: Recent Developments and Future Directions in Deep Learning

人工智能 计算机科学 领域(数学) 深度学习 人工智能应用 人类智力 领域(数学分析) 知识管理 数据科学 数学 数学分析 纯数学
作者
Bahar Uddin Mahmud,G.Y. Hong,Bernard Fong
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (2): 1-21 被引量:18
标识
DOI:10.1145/3542698
摘要

Recent advances in Artificial Intelligence (AI), particularly deep learning, are having an enormous impact on our society today. Record numbers of jobs previously held by people have been automated, from manufacturing to transportation to customer services. The concerns of AI replacing humans by taking over people's jobs need to be urgently addressed. This article investigates some promising different directions of AI development: Instead of using AI to replace people, we should use AI to team up with people so that both can work better and smarter. Human–AI symbiosis refers to people and AI working together to jointly solve problems and perform specific tasks. The recent developments in deep learning models and frameworks have significantly improved the efficiency and performance of human and AI collaborations. In this article, some research work on human–AI collaborative environments has been extensively studied and analyzed to reveal the progress in this field. Although the teaming of humans and machines includes many complex tasks, the development has been very promising. One of the main goals in this field is to develop additional capabilities in machines capable of being successful teammates with a human partner. The correctness of the outcomes is often determined by the underlying technology and how performance and human satisfaction are measured through the collaborative nature of the system. We conclude that the teaming of humans and AI, particularly deep learning, has the advantage of combining the power of AI with the human domain expertise to improve performance and create value. Human–AI symbiosis could be a promising future direction for AI's continuing integration into the world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
鳗鱼友灵发布了新的文献求助30
1秒前
ghj完成签到,获得积分10
1秒前
小兵发布了新的文献求助10
1秒前
lixin完成签到,获得积分10
1秒前
小兵发布了新的文献求助10
1秒前
第一步完成签到,获得积分10
1秒前
小兵发布了新的文献求助10
1秒前
小兵发布了新的文献求助10
1秒前
小二郎应助轻易采纳,获得10
2秒前
关关完成签到,获得积分10
2秒前
yty完成签到,获得积分10
2秒前
VAN喵完成签到,获得积分10
3秒前
3秒前
酷酷以松完成签到,获得积分10
3秒前
冯冯完成签到 ,获得积分10
3秒前
沫沫发布了新的文献求助10
4秒前
四硼酸钠完成签到,获得积分10
4秒前
锥子完成签到,获得积分10
4秒前
张业轩发布了新的文献求助10
4秒前
zzh完成签到 ,获得积分10
5秒前
千瓦时醒醒完成签到,获得积分10
5秒前
CodeCraft应助ghj采纳,获得10
5秒前
WNL完成签到,获得积分10
6秒前
6秒前
sx发布了新的文献求助10
6秒前
zzyytt完成签到,获得积分10
6秒前
水水完成签到,获得积分10
6秒前
慕青应助zxxzxx采纳,获得10
6秒前
7秒前
7秒前
活力安南完成签到,获得积分10
7秒前
7秒前
落雪慕卿颜完成签到,获得积分10
7秒前
在水一方应助Arya采纳,获得10
7秒前
九三完成签到,获得积分20
7秒前
8秒前
恐怖稽器人完成签到,获得积分10
8秒前
紫愿发布了新的文献求助10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977168
求助须知:如何正确求助?哪些是违规求助? 3521380
关于积分的说明 11207629
捐赠科研通 3258296
什么是DOI,文献DOI怎么找? 1799006
邀请新用户注册赠送积分活动 878067
科研通“疑难数据库(出版商)”最低求助积分说明 806744