Multi-Objective Evolutionary Algorithm With Machine Learning and Local Search for an Energy-Efficient Disassembly Line Balancing Problem in Remanufacturing

再制造 计算机科学 数学优化 帕累托原理 算法 多目标优化 工程类 数学 机器学习 机械工程
作者
Guangdong Tian,Cheng Zhang,Xuesong Zhang,Yixiong Feng,Gang Yuan,Tao Peng,Duc Truong Pham
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (5) 被引量:21
标识
DOI:10.1115/1.4056573
摘要

Abstract Product disassembly is a vital element of recycling and remanufacturing processes. The disassembly line balancing problem (DLBP), i.e., how to assign a set of tasks to a disassembly workstation, is crucial for a product disassembly process. Based on the importance of energy efficiency in product disassembly and the trend toward green remanufacturing, this study proposes an optimization model for a multi-objective disassembly line balancing problem that aims to minimize the idle rate, smoothness, cost, and energy consumption during the disassembly operation. Due to the complex nature of the optimization problem, a discrete whale optimization algorithm is proposed in this study, which is developed as an extension of the whale optimization algorithm. To enable the algorithm to solve discrete optimization problems, we propose coding and decoding methods that combine the features of DLBP. First of all, the initial disassembly solution is obtained by using K-means clustering to speed up the exchange of individual information. After that, new methods for updating disassembly sequences are developed, in which a local search strategy is introduced to increase the accuracy of the algorithm. Finally, the algorithm is used to solve the disassembly problem of a worm reducer and the first 12 feasible task allocation options in the Pareto frontier are shown. A comparison with typically existing algorithms confirms the high performance of the proposed whale optimization algorithm, which has a good balance of solution quality and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助MrC采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
吃饭睡觉写论文完成签到,获得积分20
1秒前
3秒前
主流二发布了新的文献求助10
3秒前
qq完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
wang完成签到 ,获得积分20
7秒前
RC_Wang发布了新的文献求助10
7秒前
科研通AI6应助十月采纳,获得10
10秒前
11秒前
木木完成签到,获得积分10
11秒前
11秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
qq大魔王发布了新的文献求助10
15秒前
16秒前
雷小牛完成签到 ,获得积分10
17秒前
李健应助阿笑采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
wang完成签到,获得积分10
21秒前
22秒前
klwy完成签到,获得积分10
23秒前
24秒前
cytheria完成签到 ,获得积分10
25秒前
计划完成签到,获得积分10
26秒前
小菠萝完成签到 ,获得积分10
27秒前
在水一方应助凉凉采纳,获得10
28秒前
28秒前
李爱国应助积极的老鼠采纳,获得10
29秒前
猪猪hero应助积极的老鼠采纳,获得10
29秒前
清爽老九发布了新的文献求助10
29秒前
orixero应助RC_Wang采纳,获得10
30秒前
30秒前
stardust314应助莫123采纳,获得10
31秒前
卧待春雷完成签到,获得积分10
31秒前
Lin完成签到,获得积分20
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771522
求助须知:如何正确求助?哪些是违规求助? 5592341
关于积分的说明 15427808
捐赠科研通 4904883
什么是DOI,文献DOI怎么找? 2639061
邀请新用户注册赠送积分活动 1586832
关于科研通互助平台的介绍 1541833