A deep journey into image enhancement: A survey of current and emerging trends

计算机科学 人工智能 图像增强 计算机视觉 图像质量 能见度 可解释性 对比度(视觉) 对比度增强 亮度 图像处理 噪音(视频) 后像 图像(数学) 医学 光学 物理 放射科 磁共振成像
作者
Dawa Chyophel Lepcha,Bhawna Goyal,Ayush Dogra,K. Sharma,Deena Nath Gupta
出处
期刊:Information Fusion [Elsevier BV]
卷期号:93: 36-76 被引量:21
标识
DOI:10.1016/j.inffus.2022.12.012
摘要

Image captured under poor-illumination conditions often display attributes of having poor contrasts, low brightness, a narrow gray range, colour distortions and considerable interference, which seriously affect the qualitative visual effects on human eyes and severely restrict the efficiency of several machine vision systems. In addition, underwater images often suffer from colour shift and contrast degradation because of an absorption and scattering of light while travelling in water. These unpleasant effects limits visibility, reduce contrast and even generate colour casts that limits the use of underwater images and videos in marine archaeology and biology. In medical imaging applications, medical images are important tools for detecting and diagnosing several medical conditions and ailments. However, the quality of medical images can often be degraded during image acquisition due to factors such as noise interference, artefacts, and poor illumination. This may lead to the misdiagnosis of medical conditions, which can further aggravate life threatening situations. Image enhancement is one of the most important technologies in the field of image processing, and its purpose is to improve the quality of images for specific applications. In general, the basic principle of image enhancement is to improve the quality and visual interpretability of an image so that it is more suitable for the specific applications and the observers. Over the last few decades, numerous image enhancement techniques have been proposed in the literature This study covers a systematic survey on existing state-of-the-art image enhancement techniques into broad classification of their algorithms. In addition, this paper summarises the datasets utilised in the literature for performing the experiments. Furthermore, an attention has been drawn towards several evaluation parameters for quantitative evaluation and compared different state-of-the-art algorithms for performance analysis on benchmark datasets. In addition, we discussed the recent areas of applications in image enhancement in detail. Lastly, we have also discussed numerous unresolved open problems and suggested possible future research directions. We believe that by putting forth all our efforts this study may presents a comprehensive resource for the future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
她的城完成签到,获得积分0
刚刚
陈炫铭应助小花采纳,获得10
1秒前
科研完成签到,获得积分10
2秒前
6秒前
7秒前
gy完成签到 ,获得积分10
8秒前
swordshine完成签到,获得积分10
8秒前
12秒前
ZBB发布了新的文献求助10
12秒前
贺无剑完成签到,获得积分10
12秒前
阿狸完成签到 ,获得积分10
14秒前
orixero应助无奈的萍采纳,获得10
17秒前
路路完成签到 ,获得积分10
18秒前
愉快的老三完成签到,获得积分10
22秒前
简奥斯汀完成签到 ,获得积分10
27秒前
《子非鱼》完成签到,获得积分10
28秒前
高兴的问儿完成签到 ,获得积分10
29秒前
lilili完成签到,获得积分10
29秒前
一区种子选手完成签到,获得积分10
34秒前
37秒前
39秒前
apollo3232完成签到,获得积分10
40秒前
无奈的萍发布了新的文献求助10
45秒前
bigpluto完成签到,获得积分10
45秒前
CLTTTt完成签到,获得积分10
51秒前
乐乐应助无奈的萍采纳,获得10
51秒前
无限的含羞草完成签到,获得积分10
58秒前
某某完成签到 ,获得积分10
1分钟前
小瑄完成签到 ,获得积分10
1分钟前
Ava应助wendydqw采纳,获得10
1分钟前
行云流水完成签到,获得积分10
1分钟前
tiantian0518完成签到 ,获得积分10
1分钟前
1分钟前
gmc完成签到 ,获得积分10
1分钟前
kangshuai完成签到,获得积分10
1分钟前
1分钟前
冯大夫发布了新的文献求助10
1分钟前
sxqqq发布了新的文献求助10
1分钟前
褚浩然完成签到,获得积分10
1分钟前
这么年轻压根睡不着完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234493
捐赠科研通 3043130
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994