Graphite-like structured conductive polymer anodes for high-capacity lithium storage with optimized voltage platform

阳极 导电体 材料科学 石墨 电极 储能 锂(药物) 导电聚合物 电压 聚合物 化学 电气工程 复合材料 物理化学 量子力学 内分泌学 工程类 医学 物理 功率(物理)
作者
Pengcheng Mao,Huilin Fan,Guangyu Zhou,Hamidreza Arandiyan,Chang Liu,Gongxu Lan,Yuan Wang,Runguo Zheng,Zhiyuan Wang,Suresh K. Bhargava,Hongyu Sun,Yanguo Liu
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:634: 63-73 被引量:8
标识
DOI:10.1016/j.jcis.2022.12.007
摘要

Graphite is a widely used anode material in commercial lithium-ion batteries (LIBs), but its low theoretical specific capacity and extremely low redox potential limit its application in high-performance lithium-ion batteries. However, developing lithium-ion battery anode with high specific capacity and suitable working potential is still challenging. At present, conductive polymers with excellent properties and graphite-like structures are widely used in the field of electrochemistry, but their Li+ storage mechanism and kinetics are still unclear and need to be further investigated. Therefore, we synthesized the conducting polymer Fe3(2, 3, 6, 7, 10, 11-hexahydroxytriphenylene)2 (Fe-CAT) by the liquid phase method, in which the d-π conjugated structure and pores facilitate electron transfer and electrolyte infiltration, improving the comprehensive electrochemical performance. The Fe-CAT electrode displays a high capacity of 950 mA h g-1 at 200 mA g-1. At the current density of 5.0 A g-1, the electrode shows a reversible capacity of 322 mA h g-1 after 1000 cycles. The average lithiation voltage plateau is ∼ 0.79 V. The combination of ex-situ characterization techniques and electrochemical kinetic analysis reveals the source of the excellent electrochemical performance of Fe-CAT. During the charging/discharging process, the aromatic ring in the organic ligand is involved in the redox reaction. Such results will provide new insights for the design of next-generation high-performance electrode materials for LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WilliamJarvis完成签到 ,获得积分10
1秒前
2秒前
阳炎完成签到,获得积分10
5秒前
李海平完成签到 ,获得积分10
21秒前
aging123完成签到,获得积分10
23秒前
cdercder应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
28秒前
归尘应助科研通管家采纳,获得10
29秒前
归尘应助科研通管家采纳,获得10
29秒前
归尘应助科研通管家采纳,获得10
29秒前
归尘应助科研通管家采纳,获得10
29秒前
轩辕中蓝完成签到 ,获得积分10
36秒前
Baboonium完成签到,获得积分10
38秒前
斯文的傲珊完成签到,获得积分10
55秒前
1分钟前
木雁之中发布了新的文献求助10
1分钟前
橙子完成签到 ,获得积分10
1分钟前
木雁之中完成签到,获得积分20
1分钟前
lishui完成签到 ,获得积分10
1分钟前
银海里的玫瑰_完成签到 ,获得积分10
1分钟前
Present完成签到 ,获得积分10
1分钟前
安安完成签到 ,获得积分10
1分钟前
even完成签到 ,获得积分10
2分钟前
积极的中蓝完成签到 ,获得积分10
2分钟前
huangqian完成签到,获得积分10
2分钟前
优美丹雪完成签到,获得积分20
2分钟前
猫的毛完成签到 ,获得积分10
2分钟前
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226694
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799075
科研通“疑难数据库(出版商)”最低求助积分说明 758732