AFC-RNN: Adaptive Forgetting-Controlled Recurrent Neural Network for Pedestrian Trajectory Prediction

循环神经网络 计算机科学 弹道 人工智能 遗忘 人工神经网络 行人 机器学习 工程类 语言学 哲学 物理 天文 运输工程
作者
Yonghao Dong,Le Yi Wang,Sanping Zhou,Wei Tang,Gang Hua,Changyin Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (11): 10177-10191
标识
DOI:10.1109/tpami.2025.3594116
摘要

Pedestrian trajectory prediction plays a crucial and fundamental role in many computer vision tasks. Most existing works utilize recurrent neural networks to extract temporal features from trajectories because their recursive structure is inherently well-suited for time series data. However, previous methods overlook the forgetting characteristics of pedestrians when modeling historical trajectories, which may cause the model to focus on the wrong positions of historical information. In this paper, we propose a simple yet effective Adaptive Forgetting-Controlled Recurrent Neural Network (AFC-RNN) for pedestrian trajectory prediction. The core idea of AFC-RNN is a novel Adaptive Forgetting Controller (AFC), which controls the forgetting degree of the historical information at each time step explicitly and adaptively. Specifically, AFC first learns memory factors for each time step based on the temporal correlation of observed trajectories using the self-attention mechanism. Then, AFC-RNN applies these memory factors to regulate the forgetting degree of observed features at each time step from RNN. Extensive experiments and ablation studies on ETH, UCY, SDD, and NBA datasets demonstrate that our method outperforms existing state-of-the-art approaches. Additionally, we provide a mathematical analysis to demonstrate the superiority of our adaptive forgetting strategy in the AFC-RNN over traditional RNNs for trajectory forgetting modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CipherSage应助谨慎乌采纳,获得10
3秒前
6秒前
泺泺发布了新的文献求助10
6秒前
lishuai发布了新的文献求助10
7秒前
7秒前
科研通AI6应助Agan采纳,获得10
9秒前
鲤鱼诗桃发布了新的文献求助10
9秒前
柯青完成签到 ,获得积分10
9秒前
Maytail完成签到,获得积分10
9秒前
浮游应助bafang采纳,获得10
9秒前
柳行天完成签到 ,获得积分10
11秒前
晃悠猴发布了新的文献求助10
12秒前
12秒前
火火完成签到 ,获得积分10
13秒前
爆米花应助俊逸书琴采纳,获得10
13秒前
13秒前
UAU发布了新的文献求助30
14秒前
4114完成签到,获得积分10
16秒前
16秒前
李健应助俊逸书琴采纳,获得10
17秒前
17秒前
ding应助freedom采纳,获得10
18秒前
19秒前
大个应助Ao采纳,获得10
20秒前
zho发布了新的文献求助10
23秒前
23秒前
超锅发布了新的文献求助10
23秒前
科研通AI6应助CYYDNDB采纳,获得10
25秒前
甜美无剑发布了新的文献求助10
28秒前
欣慰梦易发布了新的文献求助20
29秒前
fczs发布了新的文献求助10
29秒前
29秒前
YUNA完成签到 ,获得积分10
30秒前
小兔子完成签到 ,获得积分10
31秒前
32秒前
lishuai完成签到,获得积分20
32秒前
共享精神应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得30
33秒前
shi hui应助科研通管家采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560719
求助须知:如何正确求助?哪些是违规求助? 4646051
关于积分的说明 14677115
捐赠科研通 4587167
什么是DOI,文献DOI怎么找? 2516853
邀请新用户注册赠送积分活动 1490320
关于科研通互助平台的介绍 1461136