Amorphization-Induced Electronic Modulation of Gd(OH)3 Nanocages with Enhanced Enzymatic Activities for Antitumor Therapy

纳米笼 化学 调制(音乐) 组合化学 立体化学 纳米技术 生物化学 催化作用 美学 哲学 材料科学
作者
Zezhou Wang,Qi Hu,Mengmeng Zhang,Chen Li,Shu Wang,Yanhong Li,Fengshi Li,Tianqi Guo,Pengfei Hu,Kewei Jiang,Gilberto Teobaldi,Limin Liu,Lin Guo
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c09591
摘要

In nanotechnology-based cancer therapy, modulating electronic states of nanomaterials is crucial for influencing spatiotemporal dynamic behaviors of intracellular reduction-oxidation and redox homeostasis. Although rare-earth transition metals with 4f electrons present electronic energy levels suitable for electronic modulation, its practical realization is challenging due to strong 4f electron localization. Theoretical studies indicate that amorphization can significantly alter the electronic states of the 4f-dominated nanomaterials. However, the isotropic nature of disordered structures poses challenges for morphology and dimensional regulation of amorphous nanomaterials, which is important in tumor therapy. In this study, we designed and synthesized amorphous Gd(OH)3 nanocages with regulated electronic states for antitumor therapy. The reduction of the Gd-O coordination number in the amorphous structure significantly diversifies the spatial occupancy, alters the electronic states, and enhances hole delocalization, thereby boosting the redox capability of the originally inert Gd3+ compound (half-filled 4f7 orbit). This results in unexpected peroxidase (POD)-like catalytic activity, with a Kcat of 3.49 × 104 s-1, which is an order of magnitude higher than that of the natural HRP enzyme. The amorphous Gd(OH)3 nanocages also show impressive antitumor effects both in vitro and in vivo, demonstrating that amorphization is an effective strategy for modulating the electronic states of rare earth elements and unlocking new catalytic and biomedical potential for advanced synthetic nanozymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小冯完成签到,获得积分10
1秒前
coco234完成签到,获得积分10
3秒前
disciple完成签到,获得积分10
3秒前
zyy完成签到 ,获得积分10
3秒前
shenzhou9完成签到,获得积分10
5秒前
5秒前
FashionBoy应助浅帅采纳,获得10
6秒前
Wendy完成签到,获得积分10
6秒前
张鲲博完成签到,获得积分20
6秒前
平淡的秋完成签到,获得积分10
7秒前
屠夫9441完成签到 ,获得积分10
7秒前
落红雨完成签到 ,获得积分10
8秒前
爱看文献的小恐龙完成签到,获得积分10
8秒前
鬼笔环肽完成签到,获得积分10
9秒前
12秒前
芋圆完成签到,获得积分10
12秒前
Karvs完成签到,获得积分10
13秒前
果冻橙完成签到,获得积分10
13秒前
高大草莓完成签到 ,获得积分10
13秒前
苏州小北完成签到,获得积分10
13秒前
我爱吃菜完成签到 ,获得积分10
14秒前
YTY完成签到,获得积分10
15秒前
lanran发布了新的文献求助10
17秒前
可乐完成签到,获得积分10
17秒前
俞若枫完成签到,获得积分0
17秒前
拓跋涵易完成签到,获得积分10
17秒前
小超完成签到,获得积分10
19秒前
FBQZDJG2122完成签到,获得积分10
19秒前
xuuuu完成签到,获得积分10
20秒前
小休完成签到 ,获得积分10
21秒前
shanshan完成签到,获得积分10
22秒前
嗷嗷啊完成签到 ,获得积分10
23秒前
狂野的巨人完成签到 ,获得积分10
24秒前
zeice完成签到 ,获得积分10
24秒前
寒冷丹雪完成签到,获得积分10
25秒前
26秒前
好名字完成签到,获得积分10
27秒前
小杨完成签到 ,获得积分10
27秒前
谦让汝燕完成签到,获得积分10
27秒前
Sylvia完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4344893
求助须知:如何正确求助?哪些是违规求助? 3851658
关于积分的说明 12021872
捐赠科研通 3493154
什么是DOI,文献DOI怎么找? 1916861
邀请新用户注册赠送积分活动 959817
科研通“疑难数据库(出版商)”最低求助积分说明 859916