AUTOMATION OF BEER PROFILE DESCRIPTION USING NATURAL LANGUAGE PROCESSING AND SENSORY DATA

自动化 计算机科学 感觉系统 感官分析 自然(考古学) 数据处理 自然语言处理 人机交互 数据库 工程类 心理学 食品科学 生物 认知心理学 地理 机械工程 考古
作者
Yulia Vasilyevna Gulaya,Vasily Yuryevich Tsygankov
出处
期刊:Научная жизнь [CJSC ALKOR]
卷期号:20 (3): 744-754
标识
DOI:10.35679/1991-9476-2025-20-3-744-754
摘要

This article presents a scientifically grounded approach to automating the description of beer sensory profiles using modern Natural Language Processing (NLP) methods and the analysis of sensory data obtained from professional tastings. In the context of the growing digitalization of production and marketing processes in the brewing industry, there is an increasing demand for standardized, objective, and reproducible methods for capturing and presenting organoleptic product characteristics. The development of such methods is relevant both for large-scale breweries and small craft beer producers striving for consistent quality and accurate communication of product features to consumers. The aim of this study is to develop an intelligent system based on neural network architectures, in particular the Bidirectional Encoder Representations from Transformers (BERT) model, capable of automatically processing unstructured tasting texts and transforming them into structured descriptions that meet professional standards. The use of pre-trained language models enables the efficient extraction of descriptors, classification of flavor and aroma characteristics, and the generation of textual product profiles suitable for both internal quality control and external marketing purposes. The research details the stages of dataset collection, preprocessing, annotation of key features, formalization of sensory categories, selection of optimal model parameters, and evaluation metrics for text generation quality (such as BLEU, ROUGE, etc.). The tested prototypes demonstrated a high degree of alignment between generated descriptions and expert evaluations, confirmed through both manual and automated assessment. The proposed system can be integrated into corporate information platforms, including ERP and CRM systems used by brewing companies, and applied in scientific or research projects related to the qualitative evaluation of food products. The results confirm the effectiveness of NLP and artificial intelligence technologies in sensory analysis tasks and highlight the prospects for the further application of such approaches in related sectors of the food industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fyq发布了新的文献求助10
刚刚
一二完成签到 ,获得积分10
刚刚
1秒前
彭于晏应助小马驹采纳,获得10
1秒前
张小松发布了新的文献求助10
1秒前
什么完成签到,获得积分10
1秒前
爆米花应助喜喜采纳,获得10
2秒前
gy关闭了gy文献求助
2秒前
wuxunxun2015发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
薄荷完成签到,获得积分10
3秒前
科研通AI6应助朴实的帅哥采纳,获得10
3秒前
3秒前
ZhouKunlu完成签到,获得积分10
4秒前
科研通AI6应助XA采纳,获得10
4秒前
小李小李发布了新的文献求助10
4秒前
滟滟发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
852应助川上富江采纳,获得10
5秒前
Brian完成签到,获得积分20
5秒前
大宏完成签到 ,获得积分10
6秒前
烟花应助不安的煜城采纳,获得10
6秒前
7秒前
8秒前
缥缈纸飞机完成签到,获得积分10
8秒前
8秒前
大头娃娃没下巴完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Orange应助Zer采纳,获得10
9秒前
共享精神应助张小松采纳,获得10
10秒前
10秒前
失眠台灯发布了新的文献求助10
10秒前
11秒前
田様应助yunshan采纳,获得10
11秒前
11秒前
暴躁的黎云完成签到,获得积分10
11秒前
春夏秋冬发布了新的文献求助10
12秒前
louis136116发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5673343
求助须知:如何正确求助?哪些是违规求助? 4933120
关于积分的说明 15144201
捐赠科研通 4832620
什么是DOI,文献DOI怎么找? 2588365
邀请新用户注册赠送积分活动 1542038
关于科研通互助平台的介绍 1500120