Blockchain-based federated learning framework for malicious node detection in internet of vehicles (IoV) networks using fog and cloud computing

块链 云计算 计算机科学 节点(物理) 互联网 雾计算 计算机安全 物联网 计算机网络 分布式计算 万维网 操作系统 工程类 结构工程
作者
Srinivas Reddy Bandarapu,Muhammad Bilal,Pushpalika Chatterjee,Adnan Mustafa Cheema,Junaid Rashid,Jungeun Kim
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:37 (6)
标识
DOI:10.1007/s44443-025-00134-y
摘要

Abstract Due to the continuous digitalization, IoV networks are vulnerable to various communication attacks by malicious network nodes. In these attacks, the malicious entities disseminate faulty information in the network, which affects quick and intelligent decision-making in the network. Many deep learning and machine learning techniques are proposed for the classification of legitimate and malicious vehicular entities. These techniques have a centralized model training structure, which has low classification accuracy and is vulnerable to privacy leakage. To address these issues, we propose a blockchain-based federated learning framework for distributed classification of malicious and legitimate vehicles. The proposed model uses the capabilities of Long short-term memory (LSTM) and Naive Bayes (NB) for efficient and reliable malicious node detection. In our proposed model, the distributed models are trained on each locally installed virtual machine with a federated learning mechanism and then a unified model is generated at the centralized cloud server. The proposed model not only enhances the accuracy and privacy preservation but also solves the issues of centralized Internet of Vehicles (IoV) networks such as single point of failure and performance bottlenecks by utilizing the capabilities of blockchain. We used the Vehicular Reference Misbehavior (VeReMi) dataset for evaluation of our proposed model. The results show that our proposed LSTM and NB-based model outperforms centralized benchmark classification methods in malicious node detection. With an accuracy of 95%, the LSTM-based model demonstrates superior performance in identifying both malicious and legitimate vehicles, achieving a precision of 0.96 and a recall of 0.97. The high value of precision and recall shows that our model can efficiently discriminate between malicious and legitimate vehicles in the IoV network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助baobeikk采纳,获得10
1秒前
Ava应助orange采纳,获得10
1秒前
1秒前
1秒前
张7发布了新的文献求助10
2秒前
2秒前
科研通AI6应助体贴半仙采纳,获得10
3秒前
陆文灏完成签到,获得积分10
3秒前
小二郎应助有魅力的如柏采纳,获得10
4秒前
yinying发布了新的文献求助10
4秒前
6秒前
一一完成签到,获得积分10
6秒前
吴妮妮发布了新的文献求助10
6秒前
木木林发布了新的文献求助10
7秒前
7秒前
干饭虫完成签到,获得积分0
7秒前
第五轻柔完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
万事遂意完成签到,获得积分10
9秒前
10秒前
超级铅笔发布了新的文献求助10
11秒前
毕业毕业完成签到,获得积分10
11秒前
YY完成签到,获得积分10
12秒前
科研通AI6应助董小姐采纳,获得10
12秒前
12秒前
13秒前
羊羊完成签到,获得积分10
13秒前
科研通AI6应助唐新惠采纳,获得10
13秒前
Unicorn发布了新的文献求助30
13秒前
慕青应助吴妮妮采纳,获得10
14秒前
科研通AI6应助yinying采纳,获得10
14秒前
baibaili发布了新的文献求助10
14秒前
yejian发布了新的文献求助10
14秒前
15秒前
15秒前
散光不近视完成签到,获得积分10
15秒前
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338701
求助须知:如何正确求助?哪些是违规求助? 4475775
关于积分的说明 13929452
捐赠科研通 4371050
什么是DOI,文献DOI怎么找? 2401660
邀请新用户注册赠送积分活动 1394683
关于科研通互助平台的介绍 1366468