已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robust Diagnosis of Breast Cancer Based on Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy and Machine Learning

表面增强拉曼光谱 拉曼光谱 乳腺癌 纳米颗粒 银纳米粒子 材料科学 光谱学 纳米技术 癌症 拉曼散射 医学 内科学 光学 物理 量子力学
作者
Meihuan Wang,Kaining Zhang,Lifan Yue,Xiao Liu,Yongchao Lai,Huawei Zhang
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (11): 13672-13680
标识
DOI:10.1021/acsanm.4c02191
摘要

Due to the high intrusiveness of pathological diagnosis and the elusiveness of liquid biopsy, breast cancer (BC) is still in a dilemma between robustness and invasiveness. In our study, a molecular-specific diagnostic strategy was introduced for screening BC at an early stage, which utilizes surface-enhanced Raman spectroscopy (SERS) based on Ag NPs at 50–60 nm to acquire the fingerprint SERS spectra of fine needle aspiration (FNA) samples and machine learning for data mining. The SERS spectra of FNA samples from 78 patients were analyzed. Multiple machine learning algorithms including principal component analysis (PCA), principal component analysis–linear discriminant analysis (PCA-LDA), partial least-squares discriminant analysis (PLS-DA), and support vector machine (SVM) models were applied to deconstruct those SERS spectra for discrimination of different types of breast disease. Significant biochemical differences were found in SERS spectra of breast fibroadenoma, breast hyperplasia, and BC. With the SVM algorithm, the diagnostic sensitivity and specificity of BC, breast fibroadenomas, and breast hyperplasia can reach 94.74%, 83.33%, 81.82% and 86.96%, 100%, 94.00%, respectively. The hyphenated method of SERS and machine learning would re-energize FNA and enable FNA diagnosis of breast disease early and precisely, benefiting patients' treatment efficacy and patient life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinlian完成签到,获得积分20
1秒前
劝儿发布了新的文献求助10
2秒前
冷静的涫发布了新的文献求助10
2秒前
伤心的量子完成签到,获得积分10
4秒前
爆米花应助机灵的听荷采纳,获得10
6秒前
英姑应助劝儿采纳,获得10
9秒前
科研通AI5应助烬然然采纳,获得30
10秒前
思源应助听听采纳,获得10
10秒前
14秒前
冷静的涫完成签到,获得积分10
16秒前
mashichuang发布了新的文献求助10
20秒前
阿翔发布了新的文献求助10
24秒前
wangweiwei完成签到,获得积分10
26秒前
28秒前
32秒前
念之发布了新的文献求助10
32秒前
34秒前
36秒前
隐形曼青应助AQI采纳,获得10
36秒前
秀丽的正豪完成签到 ,获得积分10
36秒前
爆米花应助Q123ba叭采纳,获得10
37秒前
38秒前
asdfghjkl发布了新的文献求助30
39秒前
小马甲应助梅仑西西采纳,获得10
39秒前
Jasper应助wjw采纳,获得10
40秒前
随遇而安完成签到 ,获得积分10
40秒前
深情安青应助露露采纳,获得10
42秒前
42秒前
46秒前
47秒前
47秒前
49秒前
一盏壶发布了新的文献求助30
50秒前
51秒前
52秒前
AQI发布了新的文献求助10
52秒前
梅仑西西发布了新的文献求助10
54秒前
露露发布了新的文献求助10
54秒前
57秒前
烟花应助wade采纳,获得10
58秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815407
求助须知:如何正确求助?哪些是违规求助? 3359175
关于积分的说明 10400609
捐赠科研通 3076830
什么是DOI,文献DOI怎么找? 1690026
邀请新用户注册赠送积分活动 813577
科研通“疑难数据库(出版商)”最低求助积分说明 767674