鉴定(生物学)
计算生物学
受体
计算机科学
算法
医学
生物
内科学
植物
作者
Rémy Pétremand,Johanna Chiffelle,Sara Bobisse,Marta A. S. Perez,Julien Schmidt,Marion Arnaud,David Barras,Maria Lozano-Rabella,Raphaël Genolet,Christophe Sauvage,Damien Saugy,Alexandra Michel,Anne-Laure Huguenin-Bergenat,Charlotte Capt,Jonathan S. Moore,Claudio De Vito,Sana Intidhar Labidi‐Galy,Lana E. Kandalaft,Denarda Dangaj Laniti,Michal Bassani‐Sternberg
标识
DOI:10.1038/s41587-024-02232-0
摘要
Abstract A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.
科研通智能强力驱动
Strongly Powered by AbleSci AI