已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

From deep learning to the discovery of promising VEGFR‐2 inhibitors

血管生成 转移 生物信息学 血管内皮生长因子受体 癌症研究 激酶插入结构域受体 药物发现 化学 乳腺癌 血管内皮生长因子 药理学 计算生物学 癌症 医学 血管内皮生长因子A 生物 内科学 生物化学 基因
作者
Mehmet Ali Yucel,Ercan Adal,Mustafa Aktekın,Ceylan Hepokur,Nicola Gambacorta,Orazio Nicolotti,Öztekin Algül
出处
期刊:ChemMedChem [Wiley]
标识
DOI:10.1002/cmdc.202400108
摘要

Vascular endothelial growth factor receptor 2 (VEGFR‐2) stands as a prominent therapeutic target in oncology, playing a critical role in angiogenesis, tumor growth, and metastasis. FDA‐approved VEGFR‐2 inhibitors are associated with diverse side effects. Thus, finding novel and more effective inhibitors is of utmost importance. In this study, a deep learning (DL) classification model was first developed and then employed to select putative active VEGFR‐2 inhibitors from an in‐house chemical library including 187 druglike compounds. A pool of 18 promising candidates was shortlisted and screened against VEGFR‐2 by using molecular docking. Finally, two compounds, RHE‐334 and EA‐11, were prioritized as promising VEGFR‐2 inhibitors by employing PLATO, our target fishing and bioactivity prediction platform. Based on this rationale, we prepared RHE‐334 and EA‐11 and successfully tested their anti‐proliferative potential against MCF‐7 human breast cancer cells with IC50 values of 26.78±4.02 and 38.73±3.84 µM, respectively. Their toxicities were instead challenged against the WI‐38. Interestingly, expression studies indicated that, in the presence of RHE‐334, VEGFR‐2 was equal to 0.52±0.03, thus comparable to imatinib equal to 0.63±0.03. In conclusion, this workflow based on theoretical and experimental approaches demonstrates effective in identifying VEGFR‐2 inhibitors and can be easily adapted to other medicinal chemistry goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
屠俊豪完成签到,获得积分10
2秒前
xk8888完成签到,获得积分10
3秒前
5秒前
幽默的太阳完成签到 ,获得积分10
6秒前
9秒前
9秒前
10秒前
11秒前
小蘑菇应助大豹子采纳,获得10
12秒前
12秒前
Lin发布了新的文献求助10
15秒前
wq发布了新的文献求助10
15秒前
对照完成签到 ,获得积分10
15秒前
聪慧小燕发布了新的文献求助10
18秒前
玩命的糖豆完成签到 ,获得积分10
19秒前
20秒前
脑洞疼应助Ayyyy采纳,获得10
21秒前
21秒前
汐月完成签到,获得积分10
22秒前
Lyuhng+1完成签到 ,获得积分10
22秒前
可爱的函函应助寒雨采纳,获得10
23秒前
24秒前
Jasper应助聪慧小燕采纳,获得10
25秒前
回眸完成签到 ,获得积分10
25秒前
liuliu完成签到 ,获得积分10
27秒前
JFy发布了新的文献求助30
28秒前
28秒前
激动的晓筠完成签到 ,获得积分10
31秒前
666发布了新的文献求助10
32秒前
终生科研徒刑完成签到 ,获得积分10
32秒前
32秒前
33秒前
桐桐应助JFy采纳,获得20
35秒前
CSP000发布了新的文献求助10
37秒前
37秒前
39秒前
41秒前
42秒前
Wxy完成签到,获得积分20
42秒前
文艺的枫叶完成签到 ,获得积分10
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340458
关于积分的说明 10300316
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677356
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491