AIGAN: Attention–encoding Integrated Generative Adversarial Network for the reconstruction of low-dose CT and low-dose PET images

鉴别器 计算机科学 发电机(电路理论) 编码(内存) 人工智能 正电子发射断层摄影术 PET-CT 管道(软件) 核医学 计算机视觉 模式识别(心理学) 物理 医学 探测器 量子力学 电信 功率(物理) 程序设计语言
作者
Yu Fu,Shunjie Dong,Meng Niu,Le Xue,Hanning Guo,Yanyan Huang,Yuanfan Xu,Tianbai Yu,Kuangyu Shi,Qianqian Yang,Yiyu Shi,Hong Zhang,Mei Tian,Cheng Zhuo
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:86: 102787-102787 被引量:37
标识
DOI:10.1016/j.media.2023.102787
摘要

X-ray computed tomography (CT) and positron emission tomography (PET) are two of the most commonly used medical imaging technologies for the evaluation of many diseases. Full-dose imaging for CT and PET ensures the image quality but usually raises concerns about the potential health risks of radiation exposure. The contradiction between reducing the radiation exposure and remaining diagnostic performance can be addressed effectively by reconstructing the low-dose CT (L-CT) and low-dose PET (L-PET) images to the same high-quality ones as full-dose (F-CT and F-PET). In this paper, we propose an Attention–encoding Integrated Generative Adversarial Network (AIGAN) to achieve efficient and universal full-dose reconstruction for L-CT and L-PET images. AIGAN consists of three modules: the cascade generator, the dual-scale discriminator and the multi-scale spatial fusion module (MSFM). A sequence of consecutive L-CT (L-PET) slices is first fed into the cascade generator that integrates with a generation-encoding-generation pipeline. The generator plays the zero-sum game with the dual-scale discriminator for two stages: the coarse and fine stages. In both stages, the generator generates the estimated F-CT (F-PET) images as like the original F-CT (F-PET) images as possible. After the fine stage, the estimated fine full-dose images are then fed into the MSFM, which fully explores the inter- and intra-slice structural information, to output the final generated full-dose images. Experimental results show that the proposed AIGAN achieves the state-of-the-art performances on commonly used metrics and satisfies the reconstruction needs for clinical standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助YT采纳,获得10
1秒前
卡布达完成签到,获得积分10
2秒前
2秒前
修仙中应助科研通管家采纳,获得10
3秒前
蓝天应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
修仙中应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助263采纳,获得10
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
小小油应助科研通管家采纳,获得100
3秒前
CipherSage应助雨泽理采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Frank应助科研通管家采纳,获得10
3秒前
积极向上发布了新的文献求助10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
远志发布了新的文献求助30
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
修仙中应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Frank应助科研通管家采纳,获得10
4秒前
科研通AI6应助LL采纳,获得30
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
时生完成签到,获得积分20
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626363
求助须知:如何正确求助?哪些是违规求助? 4712202
关于积分的说明 14958524
捐赠科研通 4781493
什么是DOI,文献DOI怎么找? 2554266
邀请新用户注册赠送积分活动 1515993
关于科研通互助平台的介绍 1476327