AIGAN: Attention–encoding Integrated Generative Adversarial Network for the reconstruction of low-dose CT and low-dose PET images

鉴别器 计算机科学 发电机(电路理论) 编码(内存) 人工智能 正电子发射断层摄影术 PET-CT 管道(软件) 核医学 计算机视觉 模式识别(心理学) 物理 医学 探测器 量子力学 电信 功率(物理) 程序设计语言
作者
Yu Fu,Shunjie Dong,Meng Niu,Le Xue,Hanning Guo,Yanyan Huang,Yuanfan Xu,Tianbai Yu,Kuangyu Shi,Qianqian Yang,Yiyu Shi,Hong Zhang,Mei Tian,Cheng Zhuo
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102787-102787 被引量:21
标识
DOI:10.1016/j.media.2023.102787
摘要

X-ray computed tomography (CT) and positron emission tomography (PET) are two of the most commonly used medical imaging technologies for the evaluation of many diseases. Full-dose imaging for CT and PET ensures the image quality but usually raises concerns about the potential health risks of radiation exposure. The contradiction between reducing the radiation exposure and remaining diagnostic performance can be addressed effectively by reconstructing the low-dose CT (L-CT) and low-dose PET (L-PET) images to the same high-quality ones as full-dose (F-CT and F-PET). In this paper, we propose an Attention–encoding Integrated Generative Adversarial Network (AIGAN) to achieve efficient and universal full-dose reconstruction for L-CT and L-PET images. AIGAN consists of three modules: the cascade generator, the dual-scale discriminator and the multi-scale spatial fusion module (MSFM). A sequence of consecutive L-CT (L-PET) slices is first fed into the cascade generator that integrates with a generation-encoding-generation pipeline. The generator plays the zero-sum game with the dual-scale discriminator for two stages: the coarse and fine stages. In both stages, the generator generates the estimated F-CT (F-PET) images as like the original F-CT (F-PET) images as possible. After the fine stage, the estimated fine full-dose images are then fed into the MSFM, which fully explores the inter- and intra-slice structural information, to output the final generated full-dose images. Experimental results show that the proposed AIGAN achieves the state-of-the-art performances on commonly used metrics and satisfies the reconstruction needs for clinical standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
spujo应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得20
1秒前
1秒前
pluto应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
spujo应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
spujo应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
spujo应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得30
3秒前
3秒前
渡增越发布了新的文献求助10
3秒前
orixero应助港岛妹妹采纳,获得10
3秒前
程艳完成签到 ,获得积分10
4秒前
5秒前
优秀的易文完成签到,获得积分10
5秒前
慕青应助凡凡没烦恼采纳,获得10
5秒前
珍珠奶茶发布了新的文献求助10
6秒前
沙粒子发布了新的文献求助10
6秒前
6秒前
8秒前
Animagus发布了新的文献求助10
9秒前
王文学发布了新的文献求助10
9秒前
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794917
求助须知:如何正确求助?哪些是违规求助? 3339846
关于积分的说明 10297717
捐赠科研通 3056457
什么是DOI,文献DOI怎么找? 1677034
邀请新用户注册赠送积分活动 805101
科研通“疑难数据库(出版商)”最低求助积分说明 762330