计算机科学
人工智能
深度学习
背景(考古学)
机器学习
在线学习
会话(web分析)
面部表情
多媒体
万维网
古生物学
生物
作者
Swadha Gupta,Parteek Kumar,Raj Kumar Tekchandani
标识
DOI:10.1007/s11042-022-13558-9
摘要
The dramatic impact of the COVID-19 pandemic has resulted in the closure of physical classrooms and teaching methods being shifted to the online medium.To make the online learning environment more interactive, just like traditional offline classrooms, it is essential to ensure the proper engagement of students during online learning sessions.This paper proposes a deep learning-based approach using facial emotions to detect the real-time engagement of online learners. This is done by analysing the students' facial expressions to classify their emotions throughout the online learning session. The facial emotion recognition information is used to calculate the engagement index (EI) to predict two engagement states "Engaged" and "Disengaged". Different deep learning models such as Inception-V3, VGG19 and ResNet-50 are evaluated and compared to get the best predictive classification model for real-time engagement detection. Varied benchmarked datasets such as FER-2013, CK+ and RAF-DB are used to gauge the overall performance and accuracy of the proposed system. Experimental results showed that the proposed system achieves an accuracy of 89.11%, 90.14% and 92.32% for Inception-V3, VGG19 and ResNet-50, respectively, on benchmarked datasets and our own created dataset. ResNet-50 outperforms all others with an accuracy of 92.3% for facial emotions classification in real-time learning scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI