Facial emotion recognition based real-time learner engagement detection system in online learning context using deep learning models

计算机科学 人工智能 深度学习 背景(考古学) 机器学习 在线学习 会话(web分析) 面部表情 多媒体 万维网 古生物学 生物
作者
Swadha Gupta,Parteek Kumar,Raj Kumar Tekchandani
出处
期刊:Multimedia Tools and Applications [Springer Science+Business Media]
卷期号:82 (8): 11365-11394 被引量:96
标识
DOI:10.1007/s11042-022-13558-9
摘要

The dramatic impact of the COVID-19 pandemic has resulted in the closure of physical classrooms and teaching methods being shifted to the online medium.To make the online learning environment more interactive, just like traditional offline classrooms, it is essential to ensure the proper engagement of students during online learning sessions.This paper proposes a deep learning-based approach using facial emotions to detect the real-time engagement of online learners. This is done by analysing the students' facial expressions to classify their emotions throughout the online learning session. The facial emotion recognition information is used to calculate the engagement index (EI) to predict two engagement states "Engaged" and "Disengaged". Different deep learning models such as Inception-V3, VGG19 and ResNet-50 are evaluated and compared to get the best predictive classification model for real-time engagement detection. Varied benchmarked datasets such as FER-2013, CK+ and RAF-DB are used to gauge the overall performance and accuracy of the proposed system. Experimental results showed that the proposed system achieves an accuracy of 89.11%, 90.14% and 92.32% for Inception-V3, VGG19 and ResNet-50, respectively, on benchmarked datasets and our own created dataset. ResNet-50 outperforms all others with an accuracy of 92.3% for facial emotions classification in real-time learning scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫竹完成签到,获得积分10
刚刚
刚刚
hoongyan完成签到 ,获得积分10
1秒前
ljs发布了新的文献求助10
1秒前
神马研通完成签到,获得积分10
2秒前
2秒前
3秒前
Dding完成签到,获得积分10
3秒前
科研通AI5应助罗晨采纳,获得10
3秒前
3秒前
阿丽阿丽发布了新的文献求助10
3秒前
3秒前
可爱的函函应助虚幻雪枫采纳,获得10
4秒前
热情饼干发布了新的文献求助10
4秒前
4秒前
ssy发布了新的文献求助10
5秒前
7秒前
HEIKU应助科研通管家采纳,获得10
8秒前
夕诙应助科研通管家采纳,获得30
8秒前
HEIKU应助科研通管家采纳,获得10
8秒前
竹筏过海应助科研通管家采纳,获得30
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
lx840518发布了新的文献求助10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助Hammer采纳,获得30
8秒前
哟嚛发布了新的文献求助10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
pluto应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
HEIKU应助科研通管家采纳,获得10
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391