无定形固体
化学
光致发光
纳米材料
高分辨率透射电子显微镜
拉曼光谱
配体(生物化学)
金属有机骨架
纳米技术
结晶学
透射电子显微镜
化学工程
物理化学
材料科学
吸附
工程类
受体
物理
光学
生物化学
光电子学
作者
Yuri A. Mezenov,Stéphanie Bruyère,Andrei A. Krasilin,E.K. Khrapova,Semyon V. Bachinin,Pavel V. Alekseevskiy,Sergei Shipiloskikh,Pascal Boulet,Sébastien Hupont,Alexandre Nominé,Brigitte Vigolo,Alexander S. Novikov,Thierry Belmonte,Valentin A. Milichko
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2022-08-24
卷期号:61 (35): 13992-14003
被引量:24
标识
DOI:10.1021/acs.inorgchem.2c01978
摘要
Metal-organic frameworks (MOFs) have been recently explored as crystalline solids for conversion into amorphous phases demonstrating non-specific mechanical, catalytic, and optical properties. The real-time control of such structural transformations and their outcomes still remain a challenge. Here, we use in situ high-resolution transmission electron microscopy with 0.01 s time resolution to explore non-thermal (electron induced) amorphization of a MOF single crystal, followed by transformation into an amorphous nanomaterial. By comparing a series of M-BTC (M: Fe3+, Co3+, Co2+, Ni2+, and Cu2+; BTC: 1,3,5-benzentricarboxylic acid), we demonstrate that the topology of a metal cluster of the parent MOFs determines the rate of formation and the chemistry of the resulting phases containing an intact ligand and metal or metal oxide nanoparticles. Confocal Raman and photoluminescence spectroscopies further confirm the integrity of the BTC ligand and coordination bond breaking, while high-resolution imaging with chemical and structural analysis over time allows for tracking the dynamics of solid-to-solid transformations. The revealed relationship between the initial and resulting structures and the stability of the obtained phase and its photoluminescence over time contribute to the design of new amorphous MOF-based optical nanomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI