The impact of diverse crystalline and morphollogical electrode structures on the performance of electrochemical energy storage devices

假电容器 超级电容器 储能 材料科学 纳米技术 电化学能量转换 石墨烯 电容器 电化学 电解质 电极 能量转换 电气工程 功率(物理) 工程类 化学 物理 物理化学 电压 热力学 量子力学
作者
Mona Layegh,F. E. Ghodsi
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 359-367
标识
DOI:10.1016/b978-0-323-85669-0.00144-6
摘要

Needless to say, with the rapidly increasing energy consumption and environmental concern, and diminishing fossil fuel reserves, there is a growing need for clean and sustainable energy resources, as well as designing novel materials and developing green efficient synthesis routes with regard to energy conversion and storage technologies. The energy storage devices such as high energy density batteries, high power density electrochemical capacitors (pseudocapacitors and supercapacitors), and high energy/power density hybrid capacitors have been undeniably promising candidates to compete with the conventional sources of energy and are an inseparable part of our daily life. The capability of storing energy exhibits a strong dependency on the electrode characteristics primarily the crystalline structure, surface morphology, and surface area. During the years, many research studies have been carried out focusing on improvement of the performance of these energy storage devices by implementing diverse approaches such as engineering the surface and crystalline structure of electrodes with optimized synthesis routes and conditions and gaining a deep understanding of electrode/electrolyte interface mechanisms. Studies reveal that electroactive materials such as MXene nanosheets, Graphene, Transition metal oxides (V2O5, NiFe2O4, MoO3 Co3O4, and Fe2O3), and transition metal dichalcogenide (like sulfides and selenides) are robust candidates to improve the performance of capacitors and batteries. Sol-gel processes, hydrothermal synthesis, aqueous exfoliation, interfacial reaction-based synthesis, and electrodeposition are examples of fabrication routes that have been applied to produce these electrode materials. To conclude, the main aim of this article is to provide an overview of the recent state-of-the-art research studies in which the influence of the structural/morphological modifications of electrode materials on the electrode/electrolyte interface reaction mechanisms and the performance of the electrochemical energy storage devices, consequent, have been explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liangmh发布了新的文献求助10
3秒前
科目三应助李可欣采纳,获得30
3秒前
mirror发布了新的文献求助30
3秒前
5秒前
5秒前
读个屁完成签到,获得积分20
6秒前
冷静如松完成签到 ,获得积分10
6秒前
楚轩完成签到,获得积分10
8秒前
ZZX完成签到,获得积分10
10秒前
11秒前
xiaoxie发布了新的文献求助10
11秒前
12秒前
13秒前
可可完成签到,获得积分20
13秒前
可可发布了新的文献求助10
16秒前
李健应助魔幻的紫霜采纳,获得10
17秒前
pluto发布了新的文献求助10
18秒前
18秒前
ASBL完成签到,获得积分10
19秒前
小桃耶完成签到,获得积分10
22秒前
22秒前
浅浅依云完成签到,获得积分10
22秒前
利物鸟贝拉完成签到,获得积分10
23秒前
罗阳发布了新的文献求助10
23秒前
25秒前
深情安青应助migao采纳,获得10
26秒前
卡卡西应助可可采纳,获得10
27秒前
田様应助高兴的初夏采纳,获得10
28秒前
小桃耶发布了新的文献求助10
29秒前
29秒前
30秒前
30秒前
31秒前
我是老大应助阿森采纳,获得10
31秒前
31秒前
汉堡包应助科研通管家采纳,获得10
32秒前
李健应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
顾矜应助科研通管家采纳,获得10
32秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901491
求助须知:如何正确求助?哪些是违规求助? 3446223
关于积分的说明 10843799
捐赠科研通 3171322
什么是DOI,文献DOI怎么找? 1752254
邀请新用户注册赠送积分活动 847073
科研通“疑难数据库(出版商)”最低求助积分说明 789698