AGILE Platform: A Deep Learning-Powered Approach to Accelerate LNP Development for mRNA Delivery

敏捷软件开发 计算生物学 信使核糖核酸 化学 纳米技术 计算机科学 生物 生物化学 软件工程 材料科学 基因
作者
Yue Xu,Shihao Ma,Haotian Cui,Jingan Chen,Shufen Xu,Kevin Wang,Andrew Varley,Rick Xing Ze Lu,Bo Wang,Bowen Li
标识
DOI:10.1101/2023.06.01.543345
摘要

Abstract Ionizable lipid nanoparticles (LNPs) have seen widespread use in mRNA delivery for clinical applications, notably in SARS-CoV-2 mRNA vaccines. Despite their successful use, expansion of mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored to different target cell types. The traditional process of LNP development remains labor-intensive and cost-inefficient, relying heavily on trial and error. In this study, we present the A I- G uided I onizable L ipid E ngineering (AGILE) platform, a synergistic combination of deep learning and combinatorial chemistry. AGILE streamlines the iterative development of ionizable lipids, crucial components for LNP-mediated mRNA delivery. This approach brings forth three significant features: efficient design and synthesis of combinatorial lipid libraries, comprehensive in silico lipid screening employing deep neural networks, and adaptability to diverse cell lines. Using AGILE, we were able to rapidly design, synthesize, and evaluate new ionizable lipids for mRNA delivery in muscle and immune cells, selecting from a library of over 10,000 candidates. Importantly, AGILE has revealed cell-specific preferences for ionizable lipids, indicating the need for different tail lengths and head groups for optimal delivery to varying cell types. These results underscore the potential of AGILE in expediting the development of customized LNPs. This could significantly contribute to addressing the complex needs of mRNA delivery in clinical practice, thereby broadening the scope and efficacy of mRNA therapies. One Sentence Summary AI and combinatorial chemistry expedite ionizable lipid creation for mRNA delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十八发布了新的文献求助20
2秒前
BINGBING发布了新的文献求助10
2秒前
YXHTCM完成签到,获得积分10
3秒前
3秒前
4秒前
什么也难不倒我完成签到 ,获得积分10
4秒前
5秒前
5秒前
明明发布了新的文献求助10
8秒前
科研通AI2S应助积极的凌波采纳,获得10
8秒前
9秒前
星川发布了新的文献求助10
11秒前
JamesPei应助包容的瑾瑜采纳,获得10
12秒前
鸠摩智完成签到,获得积分10
12秒前
liquor发布了新的文献求助10
12秒前
今后应助明明采纳,获得10
13秒前
隐形曼青应助huohuo采纳,获得10
14秒前
怡然的沁完成签到,获得积分20
15秒前
16秒前
可爱的函函应助飞宇采纳,获得10
16秒前
Eason完成签到,获得积分10
16秒前
17秒前
17秒前
liquor完成签到,获得积分10
18秒前
小蘑菇应助Jane采纳,获得10
19秒前
明明完成签到,获得积分20
20秒前
21秒前
22秒前
ybheart发布了新的文献求助10
23秒前
23秒前
ssr010902发布了新的文献求助10
23秒前
24秒前
123完成签到,获得积分10
25秒前
123发布了新的文献求助10
27秒前
27秒前
丘比特应助我是张铁柱·采纳,获得10
29秒前
lyz完成签到,获得积分10
30秒前
今后应助XudongHou采纳,获得10
30秒前
elivsZhou完成签到,获得积分10
30秒前
小二郎应助星川采纳,获得10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846630
求助须知:如何正确求助?哪些是违规求助? 3389172
关于积分的说明 10555993
捐赠科研通 3109532
什么是DOI,文献DOI怎么找? 1713799
邀请新用户注册赠送积分活动 824915
科研通“疑难数据库(出版商)”最低求助积分说明 775135