Four-Dimensional Printed Construct from Temperature-Responsive Self-Folding Feedstock for Pharmaceutical Applications with Machine Learning Modeling

构造(python库) 3D打印 原材料 计算机科学 药物输送 折叠(DSP实现) 纳米技术 3d打印 材料科学 工艺工程 生物医学工程 化学 机械工程 复合材料 工程类 有机化学 程序设计语言
作者
Purushottam Suryavanshi,Jiawei Wang,Ishaan Duggal,Mohammed Maniruzzaman,Subham Banerjee
出处
期刊:Pharmaceutics [MDPI AG]
卷期号:15 (4): 1266-1266 被引量:18
标识
DOI:10.3390/pharmaceutics15041266
摘要

Four-dimensional (4D) printing, as a newly evolving technology to formulate drug delivery devices, displays distinctive advantages that can autonomously monitor drug release according to the actual physiological circumstances. In this work, we reported our earlier synthesized novel thermo-responsive self-folding feedstock for possible SSE-mediated 3D printing to form a 4D printed construct deploying machine learning (ML) modeling to determine its shape recovery behavior followed by its potential drug delivery applications. Therefore, in the present study, we converted our earlier synthesized temperature-responsive self-folding (both placebo and drug-loaded) feedstock into 4D printed constructs using SSE-mediated 3D printing technology. Further, the shape memory programming of the printed 4D construct was achieved at 50 °C followed by shape fixation at 4 °C. The shape recovery was achieved at 37 °C, and the obtained data were used to train and ML algorithms for batch optimization. The optimized batch showed a shape recovery ratio of 97.41. Further, the optimized batch was used for the drug delivery application using paracetamol (PCM) as a model drug. The % entrapment efficiency of the PCM-loaded 4D construct was found to be 98.11 ± 1.5%. In addition, the in vitro release of PCM from this programmed 4D printed construct confirms temperature-responsive shrinkage/swelling properties via releasing almost 100% ± 4.19 of PCM within 4.0 h. at gastric pH medium. In summary, the proposed 4D printing strategy pioneers the paradigm that can independently control drug release with respect to the actual physiological environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小草完成签到,获得积分10
刚刚
HWY完成签到,获得积分10
3秒前
许莞发布了新的文献求助10
4秒前
4秒前
5秒前
研友_VZG7GZ应助AXLL采纳,获得10
6秒前
ZQ发布了新的文献求助50
6秒前
南冥完成签到 ,获得积分10
7秒前
思017675发布了新的文献求助10
8秒前
8秒前
英姑应助食指采纳,获得10
8秒前
北极星完成签到 ,获得积分10
9秒前
10秒前
YUE发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
美好雨竹发布了新的文献求助10
14秒前
warithy应助zzz采纳,获得10
16秒前
小二郎应助zzz采纳,获得10
16秒前
17秒前
17秒前
19秒前
目土土完成签到 ,获得积分10
19秒前
xuan发布了新的文献求助10
19秒前
MX完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
情怀应助欣慰的盼芙采纳,获得10
22秒前
无花果应助47gongjiang采纳,获得10
23秒前
liao应助Enyiqi001采纳,获得10
23秒前
丘比特应助giserone采纳,获得10
23秒前
传奇3应助美好雨竹采纳,获得10
24秒前
皇家咖啡发布了新的文献求助30
25秒前
儒雅沛菡发布了新的文献求助10
25秒前
25秒前
桐桐应助kk采纳,获得10
26秒前
祈求夏天发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554277
求助须知:如何正确求助?哪些是违规求助? 4638820
关于积分的说明 14654266
捐赠科研通 4580509
什么是DOI,文献DOI怎么找? 2512379
邀请新用户注册赠送积分活动 1487203
关于科研通互助平台的介绍 1458044