数学
同余(几何)
编织
纯数学
同余关系
域代数上的
格子(音乐)
几何学
材料科学
物理
声学
复合材料
作者
James E. East,Nik Ruškuc
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:2
标识
DOI:10.48550/arxiv.2001.01909
摘要
This paper presents a unified framework for determining the congruences on a number of monoids and categories of transformations, diagrams, matrices and braids, and on all their ideals. The key theoretical advances present an iterative process of stacking certain normal subgroup lattices on top of each other to successively build congruence lattices of a chain of ideals. This is applied to several specific categories of: transformations; order/orientation preserving/reversing transformations; partitions; planar/annular partitions; Brauer, Temperley--Lieb and Jones partitions; linear and projective linear transformations; and partial braids. Special considerations are needed for certain small ideals, and technically more intricate theoretical underpinnings for the linear and partial braid categories.
科研通智能强力驱动
Strongly Powered by AbleSci AI