传感器
医学
力传感器
等长运动
校准
相关系数
生物医学工程
神经肌肉监测
神经肌肉阻滞
声学
物理疗法
统计
数学
物理
麻醉
作者
Kelly E. Michaelsen,Srdjan Jelačić,Sharon T. Nguyen,Kishanee J. Haththotuwegama,Kei Togashi,Andrew Bowdle
出处
期刊:Anesthesiology
[Lippincott Williams & Wilkins]
日期:2023-04-17
卷期号:139 (2): 164-172
被引量:5
标识
DOI:10.1097/aln.0000000000004590
摘要
Background Mechanomyography is the traditional gold standard research technique for quantitative assessment of neuromuscular blockade. Mechanomyography directly measures the isometric force generated by the thumb in response to ulnar nerve stimulation. Researchers must construct their own mechanomyographs since commercial instruments are no longer available. A mechanomyograph was constructed, and its performance was compared against an archival mechanomyography system from the 1970s that utilized an FT-10 Grass force transducer, hypothesizing that train-of-four ratios recorded on each device would be equivalent. Methods A mechanomyograph was constructed using 3D-printed components and modern electronics. An archival mechanomyography system was assembled from original components, including an FT-10 Grass force transducer. Signal digitization for computerized data collection was utilized instead of the original paper strip chart recorder. Both devices were calibrated with standard weights to demonstrate linear voltage response curves. The mechanomyographs were affixed to opposite arms of patients undergoing surgery, and the train-of-four ratio was measured during the onset and recovery from rocuronium neuromuscular blockade. Results Calibration measurements exhibited a positive linear association between voltage output and calibration weights with a linear correlation coefficient of 1.00 for both mechanomyography devices. The new mechanomyograph had better precision and measurement sensitivity than the archival system: 5.3 mV versus 15.5 mV and 1.6 mV versus 5.7 mV, respectively (P < 0.001 for both). A total of 767 pairs of train-of-four ratio measurements obtained from eight patients had positive linear association (R 2 = 0.94; P < 0.001). Bland–Altman analysis resulted in bias of 3.8% and limits of agreement of −13% and 21%. Conclusions The new mechanomyograph resulted in similar train-of-four ratio measurements compared to an archival mechanomyography system utilizing an FT-10 Grass force transducer. These results demonstrated continuity of gold standard measurement of neuromuscular blockade spanning nearly 50 yr, despite significant changes in the instrumentation technology. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
科研通智能强力驱动
Strongly Powered by AbleSci AI