Imaging-Based AI for Predicting Lymphovascular Space Invasion in Cervical Cancer: Systematic Review and Meta-Analysis

预印本 宫颈癌 荟萃分析 医学 癌症 计算机科学 肿瘤科 人工智能 病理 内科学 万维网
作者
Li-Zhen She,Yunfeng Li,Hongyong Wang,Jun Zhang,Yuechen Zhao,Jie Cui,Ling Qiu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e71091-e71091
标识
DOI:10.2196/71091
摘要

Abstract Background The role of artificial intelligence (AI) in enhancing the accuracy of lymphovascular space invasion (LVSI) detection in cervical cancer remains debated. Objective This meta-analysis aimed to evaluate the diagnostic accuracy of imaging-based AI for predicting LVSI in cervical cancer. Methods We conducted a comprehensive literature search across multiple databases, including PubMed, Embase, and Web of Science, identifying studies published up to November 9, 2024. Studies were included if they evaluated the diagnostic performance of imaging-based AI models in detecting LVSI in cervical cancer. We used a bivariate random-effects model to calculate pooled sensitivity and specificity with corresponding 95% confidence intervals. Study heterogeneity was assessed using the I 2 statistic. Results Of 403 studies identified, 16 studies (2514 patients) were included. For the interval validation set, the pooled sensitivity, specificity, and area under the curve (AUC) for detecting LVSI were 0.84 (95% CI 0.79-0.87), 0.78 (95% CI 0.75-0.81), and 0.87 (95% CI 0.84-0.90). For the external validation set, the pooled sensitivity, specificity, and AUC for detecting LVSI were 0.79 (95% CI 0.70-0.86), 0.76 (95% CI 0.67-0.83), and 0.84 (95% CI 0.81-0.87). Using the likelihood ratio test for subgroup analysis, deep learning demonstrated significantly higher sensitivity compared to machine learning ( P =.01). Moreover, AI models based on positron emission tomography/computed tomography exhibited superior sensitivity relative to those based on magnetic resonance imaging ( P =.01). Conclusions Imaging-based AI, particularly deep learning algorithms, demonstrates promising diagnostic performance in predicting LVSI in cervical cancer. However, the limited external validation datasets and the retrospective nature of the research may introduce potential biases. These findings underscore AI’s potential as an auxiliary diagnostic tool, necessitating further large-scale prospective validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助皮皮采纳,获得10
刚刚
王欣发布了新的文献求助10
1秒前
冷静丸子完成签到 ,获得积分10
2秒前
Clarence完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
wxnice发布了新的文献求助10
4秒前
月月完成签到,获得积分10
5秒前
耕牛热发布了新的文献求助10
6秒前
yoho完成签到,获得积分10
6秒前
7秒前
degster发布了新的文献求助10
7秒前
7秒前
任性醉山发布了新的文献求助10
8秒前
唔西迪西完成签到,获得积分10
8秒前
8秒前
同迎完成签到,获得积分10
8秒前
dkun完成签到,获得积分10
8秒前
阿渡发布了新的文献求助10
9秒前
傲娇的大炮关注了科研通微信公众号
9秒前
苞米公主完成签到,获得积分10
9秒前
9秒前
jyy应助大菊采纳,获得10
9秒前
czx发布了新的文献求助10
10秒前
凡达斯卡拉完成签到,获得积分10
11秒前
隐形的觅波完成签到 ,获得积分10
11秒前
ly完成签到,获得积分10
12秒前
斯文的飞雪完成签到,获得积分10
13秒前
Hello应助小米采纳,获得10
13秒前
13秒前
jyy应助波龙采纳,获得10
14秒前
正无穷完成签到,获得积分10
14秒前
苞米公主发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
SFAxzh完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490517
求助须知:如何正确求助?哪些是违规求助? 4589033
关于积分的说明 14423100
捐赠科研通 4521062
什么是DOI,文献DOI怎么找? 2477127
邀请新用户注册赠送积分活动 1462477
关于科研通互助平台的介绍 1435318