Deciphering Ca 2+ permeation and valence selectivity in Ca V 1: Molecular dynamics simulations reveal the three-ion knock-on mechanism

渗透 离子 分子动力学 钾通道 价(化学) 化学 选择性 分析化学(期刊) 离子通道 计算化学 色谱法 生物化学 催化作用 受体 有机化学
作者
Lingfeng Xue,Nieng Yan,Chen Song
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (22): e2424694122-e2424694122 被引量:5
标识
DOI:10.1073/pnas.2424694122
摘要

Voltage-gated calcium (Ca V ) channels are pivotal in cellular signaling due to their selective calcium ion permeation upon membrane depolarization. While previous studies have established the highly selective permeability of Ca V channels, the detailed molecular mechanism remains elusive. Here, we use extensive atomistic molecular dynamics simulations to elucidate the mechanisms governing ion permeation and valence selectivity in Ca V 1 channels. Employing the electronic continuum correction method, we simulated a calcium conductance of approximately 9 to 11 pS, aligning closely with experimental measurement. Our simulations uncovered a three-ion knock-on mechanism critical for efficient calcium ion permeation, necessitating the binding of at least two calcium ions within the selectivity filter (SF) and the subsequent entry of a third ion. In silico mutation simulations further validated the importance of multi-ion coordination in the SF for efficient ion permeation, identifying two critical residues, D706 and E1101, that are essential for the binding of two calcium ions in the SF. Moreover, we explored the competitive permeation of calcium and sodium ions and obtained a valence selectivity favoring calcium over sodium at a ratio of approximately 35:1 under the bication condition. This selectivity arises from the strong electrostatic interactions of calcium ions in the confined SF and the three-ion knock-on mechanism. Our findings provide quantitative insights into the molecular underpinnings of Ca V channel function, with implications for understanding calcium-dependent cellular processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LW发布了新的文献求助10
刚刚
阿梦完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
搜集达人应助顶针采纳,获得10
3秒前
4秒前
Jasper应助XCY采纳,获得10
4秒前
lily完成签到,获得积分10
4秒前
CodeCraft应助vv采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
ding应助会武功的阿吉采纳,获得10
5秒前
5秒前
5秒前
SR完成签到,获得积分10
5秒前
6秒前
昏睡的嵩应助mango524采纳,获得10
7秒前
1821977451发布了新的文献求助10
7秒前
bei发布了新的文献求助10
7秒前
科研通AI6.1应助小卡拉米采纳,获得10
8秒前
暖阳发布了新的文献求助10
8秒前
David Zhang发布了新的文献求助10
8秒前
9秒前
9秒前
慕青应助风筝与亭采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
明天完成签到 ,获得积分10
10秒前
10秒前
云澈完成签到,获得积分10
11秒前
11秒前
申腾达发布了新的文献求助10
11秒前
12秒前
ht006完成签到,获得积分20
12秒前
熊国开发布了新的文献求助10
13秒前
14秒前
所所应助纯真的德地采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300