SDoH Impact on Periodontal Disease Using Machine Learning and Dental Records

老年学 健康的社会决定因素 逻辑回归 医学 人口 卫生公平 环境卫生 公共卫生 内科学 护理部
作者
Jay S. Patel,Mustafa A. Badi,Reeta Verma Katiyar,Chukwuebuka Ogwo,R. Constance Wiener,Tamanna Tiwari,Usha Sambamoorthi,T. Folks
出处
期刊:Journal of Dental Research [SAGE Publishing]
标识
DOI:10.1177/00220345251328968
摘要

The impact of social determinants of health (SDoH) on periodontal disease (PD) is critical to study, as a deeper understanding of SDoH offers significant potential to inform policy and help clinicians provide holistic patient care. The use of machine learning (ML) to analyze the association of SDoH with PD provides significant advantages over traditional statistical methods. While statistical approaches are effective for identifying trends, they often struggle with the complexity and unstructured nature of data from dental electronic health records (DEHRs). The objective of this study was to determine the association between PD and SDoH using big data through linked DEHR and census data using ML. We used the records of 89,937 unique patients (754,414 longitudinal records) from the Temple University School of Dentistry who received at least 1 treatment between 2007 and 2023. Patient PD outcomes were categorized based on progression, improvement, or no change, using longitudinal data spanning up to 16 y. We applied ML models, including logistic regression, Gaussian naive Bayes, random forest, and XGBoost, to identify SDoH predictors and their associations with PD. XGBoost demonstrated the best performance with 94% accuracy and high precision, recall, and F1 scores. SHapley Additive exPlanations (SHAP) values were used to provide explainable ML analysis. The leading predictors for PD progression were higher social vulnerability index, poverty, population density, fewer dental offices, more fast-food restaurants, longer travel times, higher stress levels, tobacco use, and multiple comorbidities. Our findings underscore the critical role of SDoH in PD progression and oral health inequity, advocating for the integration of these factors in PD risk assessment and management. This study also demonstrates the potential of big data analytics and ML in providing valuable insights for clinicians and researchers to study oral health disparities and promote equitable health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zq发布了新的文献求助30
刚刚
Leisle发布了新的文献求助30
1秒前
我是老大应助菰蒲采纳,获得10
2秒前
4秒前
容易饱发布了新的文献求助10
4秒前
HWX发布了新的文献求助10
4秒前
充电宝应助三金采纳,获得10
4秒前
5秒前
5秒前
FashionBoy应助Leisle采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
尊敬的路灯完成签到,获得积分20
12秒前
南鸦北麓完成签到,获得积分10
12秒前
容易饱完成签到,获得积分10
13秒前
加德士完成签到,获得积分20
14秒前
15秒前
Leisle完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
18秒前
华仔应助小丸子采纳,获得10
18秒前
20秒前
三金发布了新的文献求助10
20秒前
冰魂应助Zirong采纳,获得80
20秒前
where完成签到,获得积分10
21秒前
kannar发布了新的文献求助10
21秒前
杨冰发布了新的文献求助10
22秒前
23秒前
wanci应助HWX采纳,获得10
23秒前
zzz完成签到 ,获得积分10
24秒前
altair发布了新的文献求助10
24秒前
都是发布了新的文献求助30
25秒前
25秒前
淡然的落雁完成签到,获得积分20
27秒前
27秒前
鱼鱼发布了新的文献求助10
27秒前
27秒前
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861752
求助须知:如何正确求助?哪些是违规求助? 3404251
关于积分的说明 10639110
捐赠科研通 3127307
什么是DOI,文献DOI怎么找? 1724720
邀请新用户注册赠送积分活动 830664
科研通“疑难数据库(出版商)”最低求助积分说明 779295