Liquid Metal-Graphene composite conductive nanofiber flexible pressure sensor for dynamic health monitoring

材料科学 石墨烯 复合数 压力传感器 导电体 纳米纤维 液态金属 纳米技术 动压 复合材料 机械工程 航空航天工程 工程类
作者
Manfeng Gong,Chi‐Shun Tu,Xitong Lin,Fang Wang,Haishan Lian,Zaifu Cui,Xiaojun Chen
出处
期刊:Materials & Design [Elsevier]
卷期号:252: 113811-113811 被引量:12
标识
DOI:10.1016/j.matdes.2025.113811
摘要

Flexible pressure sensors nanofibers-based have garnered significant attention due to their applications in smart wearable devices, healthcare monitoring, human–computer interaction, and artificial intelligence. However, developing flexible pressure sensors with excellent conductivity and stability for stable monitoring of small pressures remains a considerable challenge. This study presents a highly sensitive and rapid-response flexible pressure sensor using liquid metal-graphene composite conductive nanofibers. The sensor employs electrospinning and electrostatic spraying techniques to prepare a liquid metal-polyimide matrix material, with polyvinyl alcohol modification significantly enhancing its adhesion. Notably, an ultrasonic impregnation method was utilized to uniformly disperse conductive fillers onto the surfaces of the nanofibers and within the three-dimensional skeletal structure, creating a dual-conductive network that enhances the sensor’s conductivity. The sensor exhibits high sensitivity (3.02 kPa−1), rapid response/recovery times (80 ms/200 ms), and a broad detection range (0–90 kPa), along with excellent mechanical stability and durability (5000 loading–unloading cycles). These advantages enable the flexible pressure sensor to detect various signals from minor body movements to larger motions, such as throat swallowing and finger bending. This research provides an effective method for continuous health monitoring and the identification of subtle physiological changes, showcasing its tremendous potential in the fields of smart robotics and prosthetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李爱国应助Brass采纳,获得10
1秒前
3秒前
3秒前
sunc发布了新的文献求助10
5秒前
6秒前
大个应助ZZZ采纳,获得10
6秒前
合欢完成签到,获得积分10
6秒前
7秒前
上官若男应助陆拾荒采纳,获得10
8秒前
黑粉头头发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
且慢发布了新的文献求助100
11秒前
ZZZ完成签到,获得积分10
12秒前
天天快乐应助熊尼采纳,获得10
15秒前
科目三应助Zerolii采纳,获得10
16秒前
可爱的函函应助LZT采纳,获得10
16秒前
万俟安发布了新的文献求助10
17秒前
哈哈完成签到 ,获得积分10
17秒前
科研狗哈哈完成签到,获得积分10
19秒前
铁力木完成签到,获得积分20
19秒前
Airy完成签到,获得积分10
19秒前
21秒前
21秒前
小林野完成签到,获得积分10
21秒前
orixero应助田攀采纳,获得10
22秒前
坦率灵槐应助alicealike采纳,获得10
22秒前
wsj发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
24秒前
骑着蜗牛去赶集完成签到,获得积分10
24秒前
24秒前
25秒前
ZZZ发布了新的文献求助10
26秒前
26秒前
27秒前
WeiSONG完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648687
求助须知:如何正确求助?哪些是违规求助? 4775962
关于积分的说明 15044928
捐赠科研通 4807596
什么是DOI,文献DOI怎么找? 2570889
邀请新用户注册赠送积分活动 1527662
关于科研通互助平台的介绍 1486570