亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Model Development for Malignant Prostate Lesion Prediction Using Texture Analysis Features from Ultrasound Shear-Wave Elastography

人工智能 支持向量机 朴素贝叶斯分类器 超声波 弹性成像 灰度级 模式识别(心理学) 计算机科学 随机森林 医学 放射科 像素
作者
Adel Jawli,Ghulam Nabi,Zhihong Huang,Abeer J. Alhusaini,Cheng Wei,Benjie Tang
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:17 (8): 1358-1358
标识
DOI:10.3390/cancers17081358
摘要

Introduction: Artificial intelligence (AI) is increasingly utilized for texture analysis and the development of machine learning (ML) techniques to enhance diagnostic accuracy. ML algorithms are trained to differentiate between normal and malignant conditions based on provided data. Texture feature analysis, including first-order and second-order features, is a critical step in ML development. This study aimed to evaluate quantitative texture features of normal and prostate cancer tissues identified through ultrasound B-mode and shear-wave elastography (SWE) imaging and to develop and assess ML models for predicting and classifying normal versus malignant prostate tissues. Methodology: First-order and second-order texture features were extracted from B-mode and SWE imaging, including four reconstructed regions of interest (ROIs) from SWE images for normal and malignant tissues. A total of 94 texture features were derived, including features for intensity, Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Dependence Length Matrix (GLDLM), Gray-Level Run Length Matrix (GLRLM), and Gray-Level Size Zone Matrix (GLSZM). Five ML models were developed and evaluated using 5-fold cross-validation to predict normal and malignant tissues. Results: Data from 62 patients were analyzed. All ROIs, except those derived from B-mode imaging, exhibited statistically significant differences in features between normal and malignant tissues. Among the developed models, Support Vector Machines (SVM), Random Forest (RF), and Naive Bayes (NB) demonstrated the highest performance across all ROIs. These models consistently achieved strong predictive accuracy for classifying normal versus malignant tissues. Gray Pure SWE and Gray Reconstructed images Provided the highest sensitivity and specificity in PCa prediction by 82%, 90%, and 98%, 96%, respectively. Conclusions: Texture analysis with machine learning on SWE-US and reconstructed images effectively differentiates malignant from benign prostate lesions, with features like contrast, entropy, and correlation playing a key role. Random Forest, SVM, and Naïve Bayes showed the highest classification performance, while grayscale reconstructions (GPSWE and GRRI) enhanced detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
画清风完成签到,获得积分10
29秒前
从容芮应助科研通管家采纳,获得50
31秒前
39秒前
量子星尘发布了新的文献求助10
1分钟前
文静的成败完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
可爱的函函应助stubborn_cat采纳,获得10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
3分钟前
3分钟前
3分钟前
拿起蜡笔小新完成签到 ,获得积分10
3分钟前
GingerF完成签到,获得积分0
3分钟前
4分钟前
充电宝应助狂野的凡旋采纳,获得10
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助20
4分钟前
5分钟前
5分钟前
5分钟前
blenx完成签到,获得积分10
5分钟前
我是废物完成签到,获得积分20
5分钟前
酷炫半蕾完成签到,获得积分10
6分钟前
酷炫半蕾发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
情怀应助我是废物采纳,获得10
6分钟前
Akim应助科研通管家采纳,获得10
6分钟前
葛力发布了新的文献求助10
6分钟前
科研通AI2S应助奋斗洋葱采纳,获得10
6分钟前
6分钟前
不知道完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
奋斗洋葱发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270137
求助须知:如何正确求助?哪些是违规求助? 3800669
关于积分的说明 11910793
捐赠科研通 3447577
什么是DOI,文献DOI怎么找? 1890974
邀请新用户注册赠送积分活动 941733
科研通“疑难数据库(出版商)”最低求助积分说明 845832