Exploring a multi-path U-net with probability distribution attention and cascade dilated convolution for precise retinal vessel segmentation in fundus images
Abstract While deep learning has become the go-to method for image denoising due to its impressive noise removal Retinal blood vessel segmentation presents several challenges, including limited labeled image data, complex multi-scale vessel structures, and susceptibility to interference from lesion areas. To confront these challenges, this work offers a novel technique that integrates attention mechanisms and a cascaded dilated convolution module (CDCM) within a multi-path U-Net architecture. First, a dual-path U-Net is developed to extract both coarse and fine-grained vessel structures through separate texture and structural branches. A CDCM is integrated to gather multi-scale vessel features, enhancing the model’s ability to extract deep semantic features. Second, a boosting algorithm that incorporates probability distribution attention (PDA) within the upscaling blocks is employed. This approach adjusts the probability distribution, increasing the contribution of shallow information, thereby enhancing segmentation performance in complex backgrounds and reducing the risk of overfitting. Finally, the output from the dual-path U-Net is processed through a feature refinement module. This step further refines the vessel segmentation by integrating and extracting relevant features. Results from experiments on three benchmark datasets, including CHASEDB1, DRIVE, and STARE, demonstrate that the proposed method delivers improved segmentation accuracy compared to existing techniques.