Perceive-IR: Learning to Perceive Degradation Better for All-in-One Image Restoration

图像复原 降级(电信) 计算机科学 人工智能 计算机视觉 图像处理 图像(数学) 模式识别(心理学) 电信
作者
Xu Zhang,Jiaqi Ma,Guoli Wang,Qian Zhang,Huan Zhang,Lefei Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-1 被引量:9
标识
DOI:10.1109/tip.2025.3566300
摘要

Existing All-in-One image restoration methods often fail to simultaneously perceive degradation types and severity levels, overlooking the importance of fine-grained quality perception. Moreover, these methods often utilize highly customized backbones, which hinder their adaptability and integration into more advanced restoration networks. To address these limitations, we propose Perceive-IR, a novel backbone-agnostic All-in-One image restoration framework designed for fine-grained quality control across various degradation types and severity levels. Its modular structure allows core components to function independently of specific backbones, enabling seamless integration into advanced restoration models without significant modifications. Specifically, Perceive-IR operates in two key stages: (1) multi-level quality-driven prompt learning stage, where a fine-grained quality perceiver is meticulously trained to discern threetier quality levels by optimizing the alignment between prompts and images within the CLIP perception space. This stage ensures a nuanced understanding of image quality, laying the groundwork for subsequent restoration; (2) restoration stage, where the quality perceiver is seamlessly integrated with a difficulty-adaptive perceptual loss, forming a quality-aware learning strategy. This strategy not only dynamically differentiates sample learning difficulty but also achieves fine-grained quality control by driving the restored image toward the ground truth while simultaneously pulling it away from both low- and medium-quality samples. Furthermore, Perceive-IR incorporates a Semantic Guidance Module (SGM) and Compact Feature Extraction (CFE). The SGM leverages semantic information from pre-trained vision models to provide high-level contextual guidance, while the CFE focuses on extracting degradation-specific features, ensuring accurate handling of diverse image degradations. Extensive experiments demonstrate that Perceive-IR not only surpasses state-of-the-art methods but also generalizes reliably to zero-shot realworld and unknown degraded scenes, while adapting seamlessly to different backbone networks. This versatility underscores the framework's robustness and backbone-agnostic design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
emma完成签到,获得积分10
刚刚
刚刚
小夏完成签到,获得积分10
1秒前
xuhang发布了新的文献求助10
1秒前
李素丽发布了新的文献求助10
1秒前
2秒前
Lament完成签到,获得积分10
2秒前
2秒前
所所应助下雨了采纳,获得10
2秒前
温水完成签到 ,获得积分10
2秒前
着急的棉花糖完成签到,获得积分20
2秒前
Syyyy完成签到,获得积分10
3秒前
蒸馏水发布了新的文献求助10
3秒前
3秒前
4秒前
李不乐完成签到,获得积分10
4秒前
kaiyuannnnnn完成签到,获得积分10
4秒前
zhou发布了新的文献求助10
4秒前
聪明海豚发布了新的文献求助10
5秒前
liwei发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
niko发布了新的文献求助30
5秒前
deng发布了新的文献求助30
5秒前
LIYI发布了新的文献求助10
6秒前
秦艽完成签到,获得积分10
6秒前
李ny完成签到,获得积分20
7秒前
7秒前
Lucas应助8y24dp采纳,获得10
7秒前
111发布了新的文献求助10
8秒前
yqsf789发布了新的文献求助10
8秒前
Sandra完成签到 ,获得积分10
8秒前
可爱的函函应助西蜀小吏采纳,获得10
8秒前
二战老兵完成签到,获得积分10
8秒前
lllly发布了新的文献求助10
10秒前
John不想上班完成签到 ,获得积分10
10秒前
gaohui完成签到,获得积分10
10秒前
bionova发布了新的文献求助10
11秒前
小冰糖完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123