膜
胺气处理
复合数
化学
化学工程
纳米技术
材料科学
有机化学
复合材料
生物化学
工程类
作者
Zhe Wang,Wenjuan Zhang,Weifu Wang,Peizhi Wang,Lei Ni,Shaopo Wang,Jun Ma,Wei Cheng
标识
DOI:10.1021/acs.est.5c00132
摘要
Electromembrane water treatment technologies are attracting attention for their energy efficiency and precise separation of counterions. However, ion-exchange membranes exhibit low ionic conductance and selectivity for ions with similar charges. In this study, we developed a novel ZIF-8 composite membrane with amine-modified nanochannels through an in situ PEI-assisted seeding and secondary growth method. An integral and uniform selective layer was formed, and the amine-modified nanochannels induced differential transport of Li+, Na+, K+, and Mg2+ via the dehydration-hydration process. The composite membrane possessed a lower energy barrier for Na+ transport (Ea = 13 kJ mol-1) compared to Mg2+ (Ea = 17 kJ mol-1), showing a Na+ flux of 3.7 × 10-8 mol·cm-2·s-1 and a Na+/Mg2+ permselectivity of 52 (∼60 times higher than the commercial membrane). The physicochemical and electrochemical properties of the composite membranes were systematically characterized, revealing the significant role of the Mg2+ layer in increasing Mg2+ repulsion and facilitating Na+ diffusion. Besides, DFT simulation and interaction energy calculation elucidated that a moderate binding energy and compensation effect between ions and nanochannels, which can be precisely regulated by PEI incorporation, are crucial for the favorable passage of Na+ while maintaining high Mg2+ rejection. The membrane also demonstrated performance stability during a 5-day test and maintained high selectivity across varying salinity and pH conditions. This work advances the development of efficient cation separation membranes for sustainable desalination and resource recovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI