A fast and gentle conditional diffusion model for a missing data generation method customized for industrial soft sensor

计算机科学 软传感器 缺少数据 扩散 算法 数据挖掘 机器学习 热力学 物理 过程(计算) 操作系统
作者
Renjie Wang,Dongnian Jiang,Haowen Yang,Hui Cao,Wei Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adbe94
摘要

Abstract Due to sensor failures, interruptions to data transmission, and other factors affecting industrial processes, whole segments may be missing from a dataset, which can reduce the accuracy of an established downstream data-driven model. Existing methods usually treat the issues of filling missing data and building downstream model independently, and do not fully consider the requirements of the downstream tasks, resulting in insufficient filling accuracy for the missing data. In view of this, a fast and gentle conditional diffusion model is proposed in this paper. The main contributions of this paper are as follows. (i) We put forward a basic framework for customized missing data filling to meet the specific needs of downstream tasks, and our target of improving the prediction accuracy of the downstream soft sensing model is achieved. (ii) To meet the demand for lightweight models for industrial applications, a fast conditional diffusion model is proposed. Using a random step sampling strategy in the reverse process effectively accelerates the training speed of the model and reduces computational complexity. (iii) In order to ensure that the sensor detection process has basic qualities such as independence and objectivity, and to reduce the interference of downstream tasks in filling the missing data of the sensor, a gentle feedback strategy is designed. Validation on two datasets from a nickel smelting system and a combined cycle power plant shows that the proposed method is feasible, and is superior to alternative methods in terms of solving the problem of whole segments missing from industrial data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助呦呦采纳,获得10
1秒前
小太阳发布了新的文献求助10
1秒前
可爱的函函应助拼搏向上采纳,获得30
2秒前
青石发布了新的文献求助10
3秒前
shang发布了新的文献求助10
3秒前
跳跃的寄瑶完成签到,获得积分10
5秒前
莫飞完成签到,获得积分10
7秒前
7秒前
领导范儿应助Loooong采纳,获得10
8秒前
pasha应助刻苦的旺仔采纳,获得10
8秒前
CipherSage应助Dong采纳,获得10
8秒前
桐桐应助郑小传采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
hzz完成签到,获得积分20
11秒前
可爱凤梨完成签到,获得积分10
11秒前
11秒前
Lucas应助sunny采纳,获得10
14秒前
呦呦发布了新的文献求助10
15秒前
微笑的桐发布了新的文献求助10
16秒前
shang完成签到 ,获得积分10
16秒前
只想睡大觉完成签到,获得积分10
17秒前
眯眯眼的雨寒完成签到,获得积分10
18秒前
陶瓷小罐完成签到 ,获得积分10
19秒前
20秒前
21秒前
22秒前
次在ING完成签到,获得积分10
22秒前
野性的胡萝卜完成签到,获得积分10
24秒前
科目三应助WN采纳,获得10
25秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
27秒前
28秒前
28秒前
28秒前
科目三应助健康的幻珊采纳,获得10
29秒前
Dong发布了新的文献求助10
30秒前
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4245615
求助须知:如何正确求助?哪些是违规求助? 3778740
关于积分的说明 11863638
捐赠科研通 3432593
什么是DOI,文献DOI怎么找? 1883737
邀请新用户注册赠送积分活动 935377
科研通“疑难数据库(出版商)”最低求助积分说明 841853