清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting infarct outcomes after extended time window thrombectomy in large vessel occlusion using knowledge guided deep learning

Sørensen–骰子系数 医学 掷骰子 灌注 核医学 冲程(发动机) 灌注扫描 分割 梗塞 人工智能 放射科 心脏病学 心肌梗塞 图像分割 计算机科学 统计 机械工程 工程类 数学
作者
Lisong Dai,Lei Yuan,Houwang Zhang,Zheng Sun,Jingxuan Jiang,Zhaohui Li,Y S Li,Yunfei Zha
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-2025
标识
DOI:10.1136/jnis-2025-023355
摘要

Background Predicting the final infarct after an extended time window mechanical thrombectomy (MT) is beneficial for treatment planning in acute ischemic stroke (AIS). By introducing guidance from prior knowledge, this study aims to improve the accuracy of the deep learning model for post-MT infarct prediction using pre-MT brain perfusion data. Methods This retrospective study collected CT perfusion data at admission for AIS patients receiving MT over 6 hours after symptom onset, from January 2020 to December 2024, across three centers. Infarct on post-MT diffusion weighted imaging served as ground truth. Five Swin transformer based models were developed for post-MT infarct segmentation using pre-MT CT perfusion parameter maps: BaselineNet served as the basic model for comparative analysis, CollateralFlowNet included a collateral circulation evaluation score, InfarctProbabilityNet incorporated infarct probability mapping, ArterialTerritoryNet was guided by artery territory mapping, and UnifiedNet combined all prior knowledge sources. Model performance was evaluated using the Dice coefficient and intersection over union (IoU). Results A total of 221 patients with AIS were included (65.2% women) with a median age of 73 years. Baseline ischemic core based on CT perfusion threshold achieved a Dice coefficient of 0.50 and IoU of 0.33. BaselineNet improved to a Dice coefficient of 0.69 and IoU of 0.53. Compared with BaselineNet, models incorporating medical knowledge demonstrated higher performance: CollateralFlowNet (Dice coefficient 0.72, IoU 0.56), InfarctProbabilityNet (Dice coefficient 0.74, IoU 0.58), ArterialTerritoryNet (Dice coefficient 0.75, IoU 0.60), and UnifiedNet (Dice coefficient 0.82, IoU 0.71) (all P<0.05). Conclusions In this study, integrating medical knowledge into deep learning models enhanced the accuracy of infarct predictions in AIS patients undergoing extended time window MT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
sci_zt完成签到 ,获得积分10
10秒前
32秒前
iwsaml完成签到 ,获得积分10
32秒前
爆炒鱼丸发布了新的文献求助30
37秒前
共享精神应助颜笙采纳,获得10
37秒前
Ling完成签到 ,获得积分10
43秒前
脑洞疼应助研究新人采纳,获得10
46秒前
爆炒鱼丸完成签到,获得积分20
50秒前
英姑应助爆炒鱼丸采纳,获得10
52秒前
chen完成签到 ,获得积分10
54秒前
vitamin完成签到 ,获得积分10
1分钟前
1分钟前
spring完成签到 ,获得积分10
1分钟前
怕黑面包完成签到 ,获得积分10
1分钟前
1分钟前
彦子完成签到 ,获得积分10
1分钟前
汪鸡毛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
研究新人发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Singularity应助科研通管家采纳,获得10
2分钟前
Singularity应助科研通管家采纳,获得10
2分钟前
Singularity应助科研通管家采纳,获得30
2分钟前
勤恳的语蝶完成签到 ,获得积分10
2分钟前
楚楚完成签到 ,获得积分10
2分钟前
热带蚂蚁完成签到 ,获得积分10
2分钟前
艳艳宝完成签到 ,获得积分10
2分钟前
蛋卷完成签到 ,获得积分10
2分钟前
Ava应助林克采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
腻腻发布了新的文献求助10
2分钟前
2分钟前
3分钟前
腻腻完成签到,获得积分10
3分钟前
十一完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715273
求助须知:如何正确求助?哪些是违规求助? 5232949
关于积分的说明 15274262
捐赠科研通 4866228
什么是DOI,文献DOI怎么找? 2612811
邀请新用户注册赠送积分活动 1562974
关于科研通互助平台的介绍 1520368