Learning Dynamic Prompts for All-in-One Image Restoration

图像复原 计算机科学 计算机视觉 人工智能 图像处理 图像(数学)
作者
Gang Wu,Junjun Jiang,Kui Jiang,Xianming Liu,Liqiang Nie
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tip.2025.3567205
摘要

All-in-one image restoration, which seeks to handle multiple types of degradation within a unified model, has become a prominent research topic in computer vision. While existing deep learning models have achieved remarkable success in specific restoration tasks, extending these models to heterogenous degradations presents significant challenges. Current all-in-one methods predominantly concentrate on extracting degradation priors, often employing learned and fixed task prompts to guide the restoration process. However, these static prompts are inclined to generate an average distribution characteristics of degradations, unable to accurately depict the unique attribute of the given input, consequently providing suboptimal restoration results. To tackle these challenges, we propose a novel dynamic prompt approach called Degradation Prototype Assignment and Prompt Distribution Learning (DPPD). Our approach decouples the degradation prior extraction into two novel components: Degradation Prototype Assignment (DPA) and Prompt Distribution Learning (PDL). DPA anchors the degradation representations to predefined prototypes, providing discriminative and scalable representations. In addition, PDL models prompts as distributions rather than fixed parameters, facilitating dynamic and adaptive prompt sampling. Extensive experiments demonstrate that our DPPD framework can achieve significant performance improvement on different image restoration tasks. Codes are available at our project page https://github.com/Aitical/DPPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tokgo完成签到,获得积分10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
Jasper应助singlelx89采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得30
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得30
1秒前
852应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
Elsa完成签到,获得积分10
3秒前
香蕉觅云应助泽松采纳,获得10
3秒前
Sylvia完成签到 ,获得积分10
4秒前
chen完成签到,获得积分10
6秒前
DTS完成签到,获得积分10
6秒前
风中的哈密瓜完成签到,获得积分10
6秒前
wg发布了新的文献求助10
6秒前
wos完成签到,获得积分10
6秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640