Learning Dynamic Prompts for All-in-One Image Restoration

图像复原 计算机科学 计算机视觉 人工智能 图像处理 图像(数学)
作者
Gang Wu,Junjun Jiang,Kui Jiang,Xianming Liu,Liqiang Nie
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3567205
摘要

All-in-one image restoration, which seeks to handle multiple types of degradation within a unified model, has become a prominent research topic in computer vision. While existing deep learning models have achieved remarkable success in specific restoration tasks, extending these models to heterogenous degradations presents significant challenges. Current all-in-one methods predominantly concentrate on extracting degradation priors, often employing learned and fixed task prompts to guide the restoration process. However, these static prompts are inclined to generate an average distribution characteristics of degradations, unable to accurately depict the unique attribute of the given input, consequently providing suboptimal restoration results. To tackle these challenges, we propose a novel dynamic prompt approach called Degradation Prototype Assignment and Prompt Distribution Learning (DPPD). Our approach decouples the degradation prior extraction into two novel components: Degradation Prototype Assignment (DPA) and Prompt Distribution Learning (PDL). DPA anchors the degradation representations to predefined prototypes, providing discriminative and scalable representations. In addition, PDL models prompts as distributions rather than fixed parameters, facilitating dynamic and adaptive prompt sampling. Extensive experiments demonstrate that our DPPD framework can achieve significant performance improvement on different image restoration tasks. Codes are available at our project page https://github.com/Aitical/DPPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
高丽娜完成签到,获得积分20
2秒前
一一应助查文献的大猫采纳,获得50
2秒前
青秋鱼罐头完成签到,获得积分10
3秒前
胡亚楠完成签到,获得积分10
4秒前
5秒前
无辜梨愁完成签到 ,获得积分10
6秒前
落卿然发布了新的文献求助10
6秒前
雾霭沉沉完成签到,获得积分10
6秒前
Xiaojiu发布了新的文献求助10
8秒前
Medecinchen发布了新的文献求助10
8秒前
寻梅完成签到,获得积分10
9秒前
applelpypies完成签到 ,获得积分10
9秒前
wwwww发布了新的文献求助10
10秒前
Jacey79完成签到 ,获得积分10
12秒前
zz完成签到,获得积分10
12秒前
14秒前
CodeCraft应助再睡一夏采纳,获得10
16秒前
MchemG应助youyou1990采纳,获得10
17秒前
星星亮完成签到 ,获得积分10
18秒前
充电宝应助Xiaojiu采纳,获得10
19秒前
CipherSage应助哈哈我采纳,获得30
19秒前
牛奶糖完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
25秒前
再睡一夏发布了新的文献求助10
28秒前
支之玉发布了新的文献求助10
30秒前
毛毛完成签到,获得积分10
31秒前
汉堡包应助柔弱的纸鹤采纳,获得10
31秒前
31秒前
今后应助wtdd采纳,获得10
32秒前
32秒前
32秒前
英勇羿发布了新的文献求助50
33秒前
礼礼完成签到,获得积分10
35秒前
35秒前
36秒前
寻梅发布了新的文献求助10
37秒前
柴yuki完成签到 ,获得积分10
38秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867198
求助须知:如何正确求助?哪些是违规求助? 3409455
关于积分的说明 10663716
捐赠科研通 3133646
什么是DOI,文献DOI怎么找? 1728348
邀请新用户注册赠送积分活动 832966
科研通“疑难数据库(出版商)”最低求助积分说明 780510