已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel SOH Estimation Method for Lithium-Ion Batteries Based on the PSO–GWO–LSSVM Prediction Model with Multi-Dimensional Health Features Extraction

估计 计算机科学 工程类 系统工程
作者
Xu He,Z.J Wu,Jinghan Bai,Junchao Zhu,Lu Lv,Lujun Wang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (7): 3592-3592 被引量:1
标识
DOI:10.3390/app15073592
摘要

Accurate State of Health (SOH) estimation of lithium-ion batteries (LIBs) is critical for ensuring the safety of electric vehicles and improving the reliability of battery management systems (BMS). However, the use of individual health features (HFs) and the selection of hyperparameters can increase the data processing burden on the BMS and reduce the accuracy of data-driven models. To address the above issue, this paper proposes a novel SOH estimation method for lithium-ion batteries based on the PSO–GWO–LSSVM prediction model with multi-dimensional health feature extraction. To comprehensively capture the battery aging mechanisms, four categories of health features—time, energy, similarity, and second-order features—are extracted from the LIBs charging segments. The correlation between HFs and SOH is comprehensively evaluated through Pearson and Spearman correlation analyses, followed by Gaussian filtering and outlier detection to enhance feature quality. With strong generalization and robustness, least squares support vector machine (LSSVM) is widely applied to nonlinear computations and function approximation. To improve LSSVM model accuracy and efficiency, this paper develops a novel prediction model that uses particle swarm optimization (PSO) combined with grey wolf optimization (GWO) algorithms to optimize the LSSVM model. The generalization performance of the proposed method is validated through comparative experiments using a battery dataset provided by the Center for Advanced Life Cycle Engineering (CALCE) Research Center at the University of Maryland. Experimental results show that the coefficient of determination (R2) consistently exceeds 0.985, with the average absolute error in SOH prediction for four batteries remaining around 0.5%. The comparative experiments demonstrate that the proposed method has a certain degree of accuracy, robustness, and generalization capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助司马逍遥采纳,获得10
1秒前
RLwan发布了新的文献求助10
1秒前
全球完成签到,获得积分10
1秒前
dddyrrrrr发布了新的文献求助10
1秒前
believe发布了新的文献求助10
1秒前
2秒前
2秒前
深情安青应助轴承采纳,获得30
3秒前
YU发布了新的文献求助20
4秒前
5秒前
佩吉完成签到 ,获得积分10
6秒前
keyantong完成签到,获得积分10
6秒前
浮游应助花椒泡茶采纳,获得10
7秒前
爆米花应助Gabriel采纳,获得10
7秒前
蟹老板发布了新的文献求助10
9秒前
Lucas应助CHEN采纳,获得10
9秒前
打打应助RLwan采纳,获得10
10秒前
冷艳迎蕾应助望云舒采纳,获得50
10秒前
zhouleiwang完成签到,获得积分10
11秒前
茉莉公主完成签到,获得积分20
12秒前
天真稀完成签到,获得积分10
12秒前
13秒前
14秒前
周小荣发布了新的文献求助10
16秒前
16秒前
lllxxx发布了新的文献求助10
19秒前
lulu发布了新的文献求助10
19秒前
20秒前
21秒前
CHEN发布了新的文献求助10
21秒前
www完成签到,获得积分10
23秒前
拆东墙完成签到 ,获得积分10
24秒前
25秒前
周多多完成签到,获得积分10
25秒前
Xiao发布了新的文献求助10
25秒前
25秒前
Moomba完成签到 ,获得积分10
25秒前
26秒前
26秒前
含蓄曲奇完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243431
求助须知:如何正确求助?哪些是违规求助? 4409785
关于积分的说明 13726299
捐赠科研通 4279240
什么是DOI,文献DOI怎么找? 2348020
邀请新用户注册赠送积分活动 1345332
关于科研通互助平台的介绍 1303470