When East Meets West: Cross-Domain Drug Interaction Annotations With Large Language Models and Bidirectional Neural Networks

计算机科学 人工神经网络 领域(数学分析) 人工智能 自然语言处理 数学 数学分析
作者
Ruoxuan Zhang,Weidun Xie,Qiuzhen Lin,Xiangtao Li,Ka‐Chun Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (10): 7694-7703
标识
DOI:10.1109/jbhi.2025.3563289
摘要

Drug combination therapy is a promising strategy for managing complex and co-existing diseases. However, drug-drug interactions (DDIs) can result in unexpected adverse effects, making it crucial to understand such interactions to prevent adverse drug reactions and develop new therapeutic strategies. Current DDI annotation methods heavily rely on atom-level graph structural features, overlooking valuable drug contextual representations within medical literature. Additionally, these methods are typically designed for a specific task, limiting their scalability to diverse medical scenarios. To address these limitations, we propose TEmbed-DDI, a novel framework that leverages contextual representations and pre-trained large language model embeddings to enhance feature extraction for DDI annotations. Specifically, we retrieve meaningful contextual texts for each drug to enrich semantic features and adopt pre-trained large language model embeddings to capture rich features from these long-range contextual representations. TEmbed-DDI is the first framework to incorporate LLM-powered embeddings for medical interaction annotations. Furthermore, a bidirectional neural network is integrated into TEmbed-DDI for the integrative Western and traditional Chinese medicine DDI annotation tasks. Comparative results demonstrate that TEmbed-DDI achieves state-of-the-art performance, with the highest AUC scores of 0.992 and 0.95 on the Western CHCH and DEEP interaction annotation benchmarks. Even for the newly constructed Traditional Chinese Medicine (TCM) DDI annotation benchmark, TEmbed-DDI consistently exhibits outstanding generalization capability, achieving an AUC of 0.956. Moreover, case studies further validate TEmbed-DDI's capability to annotate previously unknown interactions. These findings suggest that TEmbed-DDI can serve as a valuable tool in annotating previously unknown drug combinations for real-world applications, facilitating the development of efficacious therapies. Furthermore, as the first framework combining traditional Chinese medicine into DDI annotation tasks, its adaptability highlights the potential in supporting cross-domain medical research. TEmbed-DDI's design principles can inspire the development of flexible LLM-powered frameworks for drug combination discovery in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小鱼完成签到,获得积分10
1秒前
外向的南烟完成签到,获得积分10
1秒前
bkagyin应助jmy采纳,获得10
1秒前
1秒前
研友_Z3342Z完成签到,获得积分10
1秒前
yangya完成签到,获得积分10
1秒前
饭冰冰完成签到,获得积分10
1秒前
脑洞疼应助mmm采纳,获得10
1秒前
FF完成签到 ,获得积分10
1秒前
赘婿应助Kevan采纳,获得10
2秒前
sooo完成签到,获得积分10
2秒前
YY-Bubble完成签到,获得积分10
3秒前
nuoran完成签到,获得积分10
3秒前
赵勇完成签到 ,获得积分10
3秒前
KKKK完成签到,获得积分10
3秒前
liu95完成签到 ,获得积分10
4秒前
jmy完成签到,获得积分10
4秒前
顾矜应助会飞的鱼采纳,获得10
4秒前
归一发布了新的文献求助10
4秒前
雅山等等完成签到,获得积分10
4秒前
ahua完成签到 ,获得积分10
5秒前
ruqinmq发布了新的文献求助10
5秒前
打工肥仔发布了新的文献求助20
5秒前
沉默香芦发布了新的文献求助10
5秒前
能干小甜瓜完成签到 ,获得积分10
5秒前
自信石头完成签到,获得积分10
6秒前
潇洒台灯发布了新的文献求助10
6秒前
niuniu完成签到 ,获得积分10
7秒前
jingsihan完成签到,获得积分10
7秒前
ccc发布了新的文献求助10
8秒前
8秒前
vera完成签到,获得积分10
8秒前
燕荣完成签到 ,获得积分10
8秒前
lxshu0722完成签到,获得积分10
9秒前
加油nyd完成签到,获得积分10
9秒前
大壮完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439032
求助须知:如何正确求助?哪些是违规求助? 4550108
关于积分的说明 14222413
捐赠科研通 4471061
什么是DOI,文献DOI怎么找? 2450182
邀请新用户注册赠送积分活动 1441117
关于科研通互助平台的介绍 1417735