紧凑空间
有界函数
半群
吸引子
数学
非线性系统
领域(数学分析)
偏微分方程
班级(哲学)
纯数学
数学分析
空格(标点符号)
抛物型偏微分方程
物理
计算机科学
人工智能
操作系统
量子力学
作者
Chang Zhang,Fang Li,Jinqiao Duan
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2018-01-01
卷期号:23 (2): 749-763
被引量:2
标识
DOI:10.3934/dcdsb.2018041
摘要
This work is devoted to investigate the well-posedness and long-time behavior of solutions for the following nonlocal nonlinear partial differential equations in a bounded domain \begin{document}$\begin{align*}u_t+(-Δ)^{σ/2}u +f(u) = g.\end{align*}$ \end{document} Firstly, due to the lack of an upper growth restriction of the nonlinearity $f$, we have to utilize a weak compactness approach in an Orlicz space to obtain the well-posedness of weak solutions for the equations. We then establish the existence of $(L^2_0(Ω), L^2_0(Ω))$-absorbing sets and $(L^2_0(Ω), H^{σ/2}_0(Ω))$-absorbing sets for the solution semigroup $\{S(t)\}_{t≥q 0}$. Finally, we prove the existence of $(L^2_0(Ω), L^2_0(Ω))$-global attractor and $(L^2_0(Ω), H^{σ/2}_0(Ω))$-global attractor by a asymptotic compactness method.
科研通智能强力驱动
Strongly Powered by AbleSci AI