Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell

加速度计 计算机科学 振动 冗余(工程) 状态监测 传感器融合 球(数学) 模式识别(心理学) 人工智能 故障模拟器 方位(导航) 信号(编程语言) 故障检测与隔离 滚动轴承 工程类 声学 数学 执行机构 陷入故障 数学分析 物理 程序设计语言 电气工程 操作系统
作者
Mir Saeed Safizadeh,Kourosh Latifi
出处
期刊:Information Fusion [Elsevier BV]
卷期号:18: 1-8 被引量:263
标识
DOI:10.1016/j.inffus.2013.10.002
摘要

This paper presents a new method for bearing fault diagnosis using the fusion of two primary sensors: an accelerometer and a load cell. A novel condition-based monitoring (CBM) system consisting of six modules: sensing, signal processing, feature extraction, classification, high-level fusion and decision making module has been proposed. To obtain acceleration and load signals, a work bench has been used. In the next stage, signal indices for each signal in both time and frequency domains have been calculated. After calculation of signal indices, principal component analysis is employed for redundancy reduction. Two principal features have been extracted from load and acceleration indices. In the fourth module, K-Nearest Neighbor (KNN) classifier has been used in order to identify the condition of the ball bearing based on vibration signal and load signal. In the fifth module, a high-level sensor fusion is used to derive information that would not be available from single sensor. Based on situation assessment carried out during the training process of classifier, a relationship between bearing condition and sensor performance has been found. Finally, a logical program has been used to decide about the condition of the ball bearing. The test results demonstrate that the load cell is powerful to detect the healthy ball bearings from the defected ones, and the accelerometer is useful to detect the location of fault. Experimental results show the effectiveness of this method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助积极的逍遥采纳,获得10
刚刚
ma完成签到,获得积分20
1秒前
李爱国应助暴躁的百褶裙采纳,获得10
1秒前
唐晓秦完成签到,获得积分10
1秒前
英俊牛排完成签到,获得积分10
2秒前
暴富完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
知性的紫寒完成签到 ,获得积分20
2秒前
3秒前
CodeCraft应助李健春采纳,获得10
4秒前
若兰发布了新的文献求助10
4秒前
orixero应助jiabaoyu采纳,获得10
4秒前
lorieeee完成签到,获得积分10
5秒前
谭淇文完成签到,获得积分10
5秒前
wwz完成签到 ,获得积分10
5秒前
雅琪完成签到,获得积分20
6秒前
Vinca发布了新的文献求助10
6秒前
快乐难敌发布了新的文献求助10
6秒前
酷波er应助chaxie采纳,获得10
7秒前
yefeng发布了新的文献求助20
8秒前
谭淇文发布了新的文献求助10
8秒前
科研通AI5应助空山新雨采纳,获得10
10秒前
勤恳凤完成签到,获得积分10
10秒前
11秒前
风中夜天完成签到,获得积分10
11秒前
Ava应助111采纳,获得10
12秒前
15秒前
内向小熊猫完成签到,获得积分10
15秒前
猴子好坏发布了新的文献求助10
15秒前
慕青应助leena采纳,获得10
15秒前
zz完成签到,获得积分10
17秒前
18秒前
111完成签到,获得积分10
18秒前
18秒前
明亮寻绿完成签到,获得积分10
19秒前
orixero应助Freya采纳,获得30
19秒前
19秒前
111完成签到,获得积分10
19秒前
Owen应助wzc采纳,获得10
20秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818341
求助须知:如何正确求助?哪些是违规求助? 3361488
关于积分的说明 10413002
捐赠科研通 3079720
什么是DOI,文献DOI怎么找? 1692197
邀请新用户注册赠送积分活动 814524
科研通“疑难数据库(出版商)”最低求助积分说明 768189