已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell

加速度计 计算机科学 振动 冗余(工程) 状态监测 传感器融合 球(数学) 模式识别(心理学) 人工智能 故障模拟器 方位(导航) 信号(编程语言) 故障检测与隔离 滚动轴承 工程类 声学 数学 执行机构 陷入故障 物理 操作系统 数学分析 电气工程 程序设计语言
作者
Mir Saeed Safizadeh,Kourosh Latifi
出处
期刊:Information Fusion [Elsevier BV]
卷期号:18: 1-8 被引量:263
标识
DOI:10.1016/j.inffus.2013.10.002
摘要

This paper presents a new method for bearing fault diagnosis using the fusion of two primary sensors: an accelerometer and a load cell. A novel condition-based monitoring (CBM) system consisting of six modules: sensing, signal processing, feature extraction, classification, high-level fusion and decision making module has been proposed. To obtain acceleration and load signals, a work bench has been used. In the next stage, signal indices for each signal in both time and frequency domains have been calculated. After calculation of signal indices, principal component analysis is employed for redundancy reduction. Two principal features have been extracted from load and acceleration indices. In the fourth module, K-Nearest Neighbor (KNN) classifier has been used in order to identify the condition of the ball bearing based on vibration signal and load signal. In the fifth module, a high-level sensor fusion is used to derive information that would not be available from single sensor. Based on situation assessment carried out during the training process of classifier, a relationship between bearing condition and sensor performance has been found. Finally, a logical program has been used to decide about the condition of the ball bearing. The test results demonstrate that the load cell is powerful to detect the healthy ball bearings from the defected ones, and the accelerometer is useful to detect the location of fault. Experimental results show the effectiveness of this method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机械翁发布了新的文献求助30
1秒前
CYL07完成签到 ,获得积分10
2秒前
WhiteT完成签到,获得积分10
2秒前
ty发布了新的文献求助10
3秒前
王伟毅完成签到,获得积分10
3秒前
4秒前
浩淼发布了新的文献求助10
5秒前
7秒前
ding应助等等采纳,获得10
8秒前
wssamuel完成签到 ,获得积分10
8秒前
欢喜天奇发布了新的文献求助10
10秒前
herschelwu完成签到,获得积分10
10秒前
13秒前
16秒前
17秒前
喵喵发布了新的文献求助10
18秒前
jmc发布了新的文献求助30
20秒前
22秒前
23秒前
小范要努力完成签到,获得积分10
23秒前
24秒前
婷123完成签到 ,获得积分10
24秒前
欢喜天奇完成签到,获得积分20
28秒前
xy发布了新的文献求助10
28秒前
年轻馒头完成签到,获得积分20
29秒前
29秒前
30秒前
情怀应助haiyan1314采纳,获得10
31秒前
jmc完成签到,获得积分10
32秒前
32秒前
fang完成签到 ,获得积分10
33秒前
34秒前
34秒前
35秒前
36秒前
今后应助科研通管家采纳,获得10
36秒前
dong应助科研通管家采纳,获得10
36秒前
wanci应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
在水一方应助科研通管家采纳,获得10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965384
求助须知:如何正确求助?哪些是违规求助? 3510678
关于积分的说明 11154585
捐赠科研通 3245005
什么是DOI,文献DOI怎么找? 1792767
邀请新用户注册赠送积分活动 874044
科研通“疑难数据库(出版商)”最低求助积分说明 804150