An interpretable deep learning algorithm for dynamic early warning of posttraumatic hemorrhagic shock based on noninvasive parameter

可解释性 预警系统 入射(几何) 休克(循环) 失血性休克 卷积神经网络 深度学习 计算机科学 试验装置 算法 医学 人工智能 数据集 集合(抽象数据类型) 数据库 机器学习 内科学 电信 物理 光学 程序设计语言
作者
Guang Zhang,Jiameng Xu,Huiquan Wang,Ming Yu,Jing Yuan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:77: 103779-103779 被引量:2
标识
DOI:10.1016/j.bspc.2022.103779
摘要

Hemorrhage and hemorrhagic shock are common causes of death after an acute trauma. The mortality from hemorrhagic shock can be significantly reduced through the prophylactic administration of red blood cells or the use of 100% mechanical ventilation. In this study, a dynamic early warning system based on non-invasive parameters was developed in this study and was evaluated using deep learning algorithms, aiming to predict the incidence of hemorrhagic shock in patients over the next 4–8 h. An observational cohort study. The data set was collected from three data sets from 210 different hospitals in the United States and the Netherlands. One of them was publicly available for model development and two were used for testing. 9659 patients from eICU database, 2942 patients from MIMICIII database, 1055 patients from AmsterdamUMC database. None. A deep learning model, constructed using Convolutional Neural Networks (CNN), Bi-directional Long-Short Term Memory (BiLSTM), and Attention Mechanism, was employed to dynamically predict the incidence of hemorrhagic shock in patients over the next 4–8 h based on 4 h patient data. A dynamic early warning model was trained with non-invasive data from the eICU database. The test set, composed of the data of the MIMICIII and AmsterdamUMC databases, was utilized for cross-database validation of model performance, and the AUC value reached 0.8104. When the model parameters were updated with 5% of data, the AUC value increased to 0.8591 in the test set composed of other data. The results from the interpretability analysis showed that gender was crucial for judging whether hemorrhagic shock would occur in patients following trauma. The deep learning model was used to validate the feasibility of constructing a dynamic early warning model for post-traumatic hemorrhagic shock based on non-invasive parameters. The interpretability analysis results were consistent with clinical study results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昵称好难取应助shuai采纳,获得30
1秒前
1秒前
舒心的冷安完成签到,获得积分10
1秒前
2秒前
无花果应助白潇潇采纳,获得10
3秒前
小童老婆发布了新的文献求助10
4秒前
一顾千年完成签到 ,获得积分10
5秒前
嘀嘀嘀发布了新的文献求助10
5秒前
感谢王晓梅转发科研通微信,获得积分50
5秒前
工藤新一发布了新的文献求助10
6秒前
就这样完成签到,获得积分10
8秒前
njxray完成签到 ,获得积分10
8秒前
感谢HH转发科研通微信,获得积分50
8秒前
简单面包完成签到,获得积分10
10秒前
10秒前
10秒前
神说应助TG_FY采纳,获得10
12秒前
14秒前
hj发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
123完成签到,获得积分10
17秒前
海意发布了新的文献求助10
17秒前
罗氏集团发布了新的文献求助10
19秒前
云梦发布了新的文献求助10
19秒前
路漫漫123完成签到,获得积分10
19秒前
19秒前
fanyueyue应助fuje采纳,获得10
20秒前
Liufgui应助fuje采纳,获得30
20秒前
Liufgui应助fuje采纳,获得30
21秒前
Liufgui应助fuje采纳,获得30
21秒前
脑洞疼应助fuje采纳,获得10
21秒前
酷波er应助fuje采纳,获得10
21秒前
在水一方应助fuje采纳,获得10
21秒前
热心市民小红花应助fuje采纳,获得10
21秒前
科研通AI2S应助fuje采纳,获得10
21秒前
拉长的蓝发布了新的文献求助10
21秒前
司马立果发布了新的文献求助10
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4103750
求助须知:如何正确求助?哪些是违规求助? 3641605
关于积分的说明 11539260
捐赠科研通 3350019
什么是DOI,文献DOI怎么找? 1840646
邀请新用户注册赠送积分活动 907621
科研通“疑难数据库(出版商)”最低求助积分说明 824756